Derivasjonsregler: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
 
(10 mellomliggende versjoner av en annen bruker er ikke vist)
Linje 55: Linje 55:
</table>
</table>


==Logaritme og eksonentialfunksjoner==  
==Logaritme og eksponentialfunksjoner==  
<table border="1" cellpadding="10">
<table border="1" cellpadding="10">
<tr>
<td></td>
<td></td>
</tr>


<tr>
<tr>
   <td> Eksponentialfunksjonen a<sup>x</sup> </td>
   <td> Eksponentialfunksjonen a<sup>x</sup>  
$\\$
[[Bevis for derivasjon av a^x  | Bevis for derivasjon av $a^x$ ]]</td>
   <td> f (x) = a<sup>x</sup></td>
   <td> f (x) = a<sup>x</sup></td>
   <td> f '(x) = a<sup>x</sup>ln a</td>
   <td> f '(x) = a<sup>x</sup>ln a</td>
Linje 73: Linje 80:
</tr>
</tr>
<tr>
<tr>
   <td>Logaritme funksjonen  </td>
   <td>Logaritme funksjonen  <br> Logaritme uansett base $y = log_bx$  <br> [[ Bevis for derivasjon av log x, vilkårlig base]]</td>
   <td> f(x) = ln |x|</td>
   <td> f(x) = ln |x| <br> $f(x) = log_b|x|$</td>
   <td> f ' (x)=<math>\frac{1}{x}</math>   </td>
   <td> f ' (x)=<math>\frac{1}{x}</math> <br>$f'(x) = \frac{1}{x \cdot ln(b)}$  </td>
   <td></td>
   <td></td>
</tr>
</tr>

Siste sideversjon per 16. des. 2021 kl. 07:58

Se også vår side om Derivasjon


Nedenfor følger en oversikt over de vanligste derivasjonsreglene for funksjoner med en variabel.

Potenser og polynomer

TYPE FUNKSJON DERIVERT EKSEMPEL
Potensen
Bevis for potens derivasjon
f(x) = xn f '(x) = nxn-1 <math>(x^3)' = 3x^2</math>
Konstant multiplisert
med funksjon
c f(x) [c f(x)]' = c f '(x) <math>(4x^3)' = 4 \cdot 3x^2 = 12x^2</math>
Konstant f(x)= C C' = 0 (5)' = 0
Polynom f(x) = g(x)+ h(x) +... f '(x) = g'(x) + h'(x) +... <math>(x^3 -4x^2 +2x -1)' = 3x^2 - 8x + 2</math>
Kvadratrot f(x)=<math>\sqrt{x}</math> f ' (x)=<math>\frac{1}{2\sqrt{x}}</math>
Nte'rot f(x)=<math>\sqrt[m]{x^n}=x^{\frac{n}{m}}</math> Se type: potenser

Logaritme og eksponentialfunksjoner

Eksponentialfunksjonen ax

$\\$

Bevis for derivasjon av $a^x$
f (x) = ax f '(x) = axln a
Eksponentialfunksjonen ex

$\\$

Bevis for derivasjon av $e^x$
f (x) = ex f '(x) = ex
Logaritme funksjonen
Logaritme uansett base $y = log_bx$
Bevis for derivasjon av log x, vilkårlig base
f(x) = ln |x|
$f(x) = log_b|x|$
f ' (x)=<math>\frac{1}{x}</math>
$f'(x) = \frac{1}{x \cdot ln(b)}$

Trigonometriske funksjoner

Sinus
Bevis -derivasjon sinus
f(x) = sin x f'(x) = cos x
Cosinus f(x) = cos x f'(x) = -sin x
Tangens
Bevis for derivasjon av tan(x)
f (x) = tan x <math>f ' (x)=\frac{1}{cos^2x}
</math>

eller

<math> f ' (x)= 1 + tan^2x </math>

Produkt, kvotient og kjerne

Produkt
Bevis for derivasjon av produkt
Eksempel
Se video [1]
f(x)<math>\cdot</math>g(x) <math>[f(x)\cdot g(x)]'= f '(x)\cdot g(x)+ f(x)\cdot g '(x) </math> $(4x^3cos(x))' \\ = 12x^2cos(x)-4x^3sin(x) \\ = 4x^2(3cos(x)-xsin(x))$
Kvotient
 Kvotient regel derivasjon-bevis
f (x)=<math>\frac{g(x)}{h(x)}</math> f ' (x)=<math>\frac{g ' (x)\cdot h(x)- g(x)\cdot h ' (x)}{(h(x))^2}</math> <math>( \frac{sin x}{2x^3})' \\ = \frac{cosx \cdot 2x^3 - 6x^2sinx}{4x^6}\\ = \frac{xcosx-3sinx}{2x^4}</math>
Kjerneregel y = g(u)
u er en funksjon av x
y ' = g ' (u)∙u' <math>(sin(x^2))' = 2x cos(x^2)</math>