Derivasjonsregler

Fra Matematikk.net
Hopp til: navigasjon, søk

Se også vår side om Derivasjon


Nedenfor følger en oversikt over de vanligste derivasjonsreglene for funksjoner med en variabel.

Potenser og polynomer

TYPE FUNKSJON DERIVERT EKSEMPEL
Potensen
Bevis for potens derivasjon
f(x) = xn f '(x) = nxn-1 <math>(x^3)' = 3x^2</math>
Konstant multiplisert
med funksjon
c f(x) [c f(x)]' = c f '(x) <math>(4x^3)' = 4 \cdot 3x^2 = 12x^2</math>
Konstant f(x)= C C' = 0 (5)' = 0
Polynom f(x) = g(x)+ h(x) +... f '(x) = g'(x) + h'(x) +... <math>(x^3 -4x^2 +2x -1)' = 3x^2 - 8x + 2</math>
Kvadratrot f(x)=<math>\sqrt{x}</math> f ' (x)=<math>\frac{1}{2\sqrt{x}}</math>
Nte'rot f(x)=<math>\sqrt[m]{x^n}=x^{\frac{n}{m}}</math> Se type: potenser

Logaritme og eksonentialfunksjoner

Eksponentialfunksjonen ax f (x) = ax f '(x) = axln a
Eksponentialfunksjonen ex f (x) = ex f '(x) = ex
Logaritme funksjonen f(x) = ln |x| f ' (x)=<math>\frac{1}{x}</math>

Trigonometriske funksjoner

Sinus [ [Bevis -derivasjon sinus ]] f(x) = sin x f'(x) = cos x
Cosinus f(x) = cos x f'(x) = -sin x
Tangens f (x) = tan x <math>f ' (x)=\frac{1}{cos^2x}</math> eller <math> f ' (x)= 1 + tan^2x </math>

Produkt, kvotient og kjerne

Produkt
Bevis for derivasjon av produkt
Eksempel
Se video [1]
f(x)<math>\cdot</math>g(x) <math>[f(x)\cdot g(x)]'= f '(x)\cdot g(x)+ f(x)\cdot g '(x) </math> $(4x^3cos(x))' \\ = 12x^2cos(x)-4x^3sin(x) \\ = 4x^2(3cos(x)-xsin(x))$
Kvotient
 Kvotient regel derivasjon-bevis
f (x)=<math>\frac{g(x)}{h(x)}</math> f ' (x)=<math>\frac{g ' (x)\cdot h(x)- g(x)\cdot h ' (x)}{(h(x))^2}</math> <math>( \frac{sin x}{2x^3})' \\ = \frac{cosx \cdot 2x^3 - 6x^2sinx}{4x^6}\\ = \frac{xcosx-3sinx}{2x^4}</math>
Kjerneregel y = g(u)
u er en funksjon av x
y ' = g ' (u)∙u' <math>(sin(x^2))' = 2x cos(x^2)</math>