Forskjell mellom versjoner av «Introduksjon til differensiallikninger»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 5: Linje 5:
 
* I differensialligninger er den ukjente en funksjon $y(x)$. En differensialligning gir sammenhengen mellom en ukjent funksjon og noen av dens deriverte.  
 
* I differensialligninger er den ukjente en funksjon $y(x)$. En differensialligning gir sammenhengen mellom en ukjent funksjon og noen av dens deriverte.  
 
* I denne artikkelen skriver vi $y^\prime$ og $\frac{dy}{dx}$ om hverandre. Den siste skrivemåten kalles Leibniz' notasjon etter den tyske filosofen og matematikeren Gottfried Wilhelm Leibniz.
 
* I denne artikkelen skriver vi $y^\prime$ og $\frac{dy}{dx}$ om hverandre. Den siste skrivemåten kalles Leibniz' notasjon etter den tyske filosofen og matematikeren Gottfried Wilhelm Leibniz.
*Man bør være fortrolig med ligninger, funksjonslære, integrasjon og derivasjon før man gir seg i kast med differensialligninger.  
+
* Man bør være fortrolig med ligninger, funksjonslære, integrasjon og derivasjon før man gir seg i kast med differensialligninger.  
*Ligningene er viktige i fysikk og andre fag, der de kan brukes til å modellere forskjellige fysiske situasjoner.
+
* Ligningene er viktige i fysikk og andre fag, der de kan brukes til å modellere forskjellige fysiske situasjoner.
  
  
Linje 17: Linje 17:
 
<blockquote style="padding: 1em; border: 3px dotted red;">
 
<blockquote style="padding: 1em; border: 3px dotted red;">
  
'''Eksempel på diff.ligning av første orden'''
+
'''Eksempel på diff.ligning av første orden''' <p></p>
<p></p>
+
 
 
En enkel ordinær differensialligning av første orden er <math>f^{\prime}(x)=0</math>. Løsningen finnes direkte ved integrasjon; vi får at <math>f(x)=c</math> for en konstant <math>c</math>.
 
En enkel ordinær differensialligning av første orden er <math>f^{\prime}(x)=0</math>. Løsningen finnes direkte ved integrasjon; vi får at <math>f(x)=c</math> for en konstant <math>c</math>.
 +
 
</blockquote>
 
</blockquote>
 +
  
 
<blockquote style="padding: 1em; border: 3px dotted red;">
 
<blockquote style="padding: 1em; border: 3px dotted red;">
  
'''Eksempel på diff.ligning av 2.orden'''
+
'''Eksempel på diff.ligning av 2.orden''' <p></p>
<p></p>
+
 
 
En enkel andreordens ordinær differensialligning er <math>m\ddot{x}(t)=10</math>. Dette er Newtons andre lov med konstant kraft (10 N) der <math>x(t)</math> er posisionen ved tida <math>t</math>. De to prikkene over <math>x</math> betyr at vi dobbeltderiverer <math>x</math> med hensyn på tiden.
 
En enkel andreordens ordinær differensialligning er <math>m\ddot{x}(t)=10</math>. Dette er Newtons andre lov med konstant kraft (10 N) der <math>x(t)</math> er posisionen ved tida <math>t</math>. De to prikkene over <math>x</math> betyr at vi dobbeltderiverer <math>x</math> med hensyn på tiden.
 +
 
</blockquote>
 
</blockquote>
 +
  
 
== Førsteordens lineære ligninger ==
 
== Førsteordens lineære ligninger ==
Linje 57: Linje 61:
 
* Multiplikasjon med ''integrerende faktor''
 
* Multiplikasjon med ''integrerende faktor''
 
* Som en ''separabel'' ligning
 
* Som en ''separabel'' ligning
 +
  
 
=== [[Integrerende faktor]] ===
 
=== [[Integrerende faktor]] ===
 +
  
 
<blockquote style="padding: 1em; border: 3px dotted red;">
 
<blockquote style="padding: 1em; border: 3px dotted red;">
Linje 77: Linje 83:
  
 
</blockquote>
 
</blockquote>
 +
  
 
<blockquote style="padding: 1em; border: 3px dotted red;">
 
<blockquote style="padding: 1em; border: 3px dotted red;">
Linje 96: Linje 103:
  
 
</blockquote>
 
</blockquote>
 +
  
 
=== [[Separable differensiallikninger]] ===
 
=== [[Separable differensiallikninger]] ===
Linje 101: Linje 109:
  
 
Separable ligninger er på formen
 
Separable ligninger er på formen
 +
 
\begin{equation}
 
\begin{equation}
 
\label{separableDiffEq}
 
\label{separableDiffEq}
Linje 116: Linje 125:
  
 
, der $F(y)$ er integralet av $(h(y))^{-1}$ og $G(x)$ integralet av $f(x)$. $C$ er en integrasjonskonstant og $F^{-1}$ er inversfunksjonen til $F$.  
 
, der $F(y)$ er integralet av $(h(y))^{-1}$ og $G(x)$ integralet av $f(x)$. $C$ er en integrasjonskonstant og $F^{-1}$ er inversfunksjonen til $F$.  
 +
  
 
<blockquote style="padding: 1em; border: 3px dotted red;">
 
<blockquote style="padding: 1em; border: 3px dotted red;">
 +
 
'''Eksempel: Separabel ligning''' <p></p>
 
'''Eksempel: Separabel ligning''' <p></p>
 +
 
Vi skal løse ligningen $y'+4xy=0$ som en separabel ligning. Da er det lurt å bruke Leibniz' notasjon. Vi omskriver til:
 
Vi skal løse ligningen $y'+4xy=0$ som en separabel ligning. Da er det lurt å bruke Leibniz' notasjon. Vi omskriver til:
 
\begin{align*}  
 
\begin{align*}  
Linje 128: Linje 140:
 
y &= y_0 \cdot e^{-2x^2}
 
y &= y_0 \cdot e^{-2x^2}
 
\end{align*}
 
\end{align*}
 +
 
Her har vi omdøpt konstanten foran eksponentialfunksjonen, slik at $y_0=e^C$. Ved å sette løsningen inn i den opprinnelige diff.ligningen, ser vi at løsningen stemmer.  
 
Her har vi omdøpt konstanten foran eksponentialfunksjonen, slik at $y_0=e^C$. Ved å sette løsningen inn i den opprinnelige diff.ligningen, ser vi at løsningen stemmer.  
 +
 
</blockquote>
 
</blockquote>
  
== Homogene lineære andreordens differensialligninger med konstante koeffisienter. ==
 
  
Vi har likningen
+
== Homogene lineære 2.ordens diff.ligninger med konstante koeffisienter ==
 +
 
 +
 
 +
En generell 2.ordens diff.ligning er på formen
  
<math>A(x)y^{''} + B(x)y' + C(x)y = D(x)</math>
+
<math>A(x)y^{\prime\prime} + B(x)y' + C(x)y = D(x)</math>
  
 
En ligning er <b>homogen</b> når D(x) = 0. Det gir oss
 
En ligning er <b>homogen</b> når D(x) = 0. Det gir oss
Linje 221: Linje 237:
  
 
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=A2A%2BA2B%2BA2C%2BA2D%2BA2E%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv]
 
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=A2A%2BA2B%2BA2C%2BA2D%2BA2E%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv]
 +
  
 
== Initialverdiproblemer ==
 
== Initialverdiproblemer ==
 +
  
 
I eksemplene over (og senere) ser man at den generelle løsningen inneholder en eller to  
 
I eksemplene over (og senere) ser man at den generelle løsningen inneholder en eller to  
Linje 255: Linje 273:
 
<math>y(x) = \frac 32 \cdot x^2 + 2 x - \frac 12 </math>
 
<math>y(x) = \frac 32 \cdot x^2 + 2 x - \frac 12 </math>
 
</blockquote>
 
</blockquote>
 +
  
 
== Retningsdiagram ==
 
== Retningsdiagram ==
 +
 +
 
Førsteorden ligninger kan skrives som y'(x) = F(x,y) der x er den variable og y er den ukjente  
 
Førsteorden ligninger kan skrives som y'(x) = F(x,y) der x er den variable og y er den ukjente  
 
funksjonen.  Dette gir stigningstallet til tangen i punktet (x,y). Dette gir et bilde av hvordan grafene til løsningsfunksjonene ser ut og kalles et retningsdiagram for differensialligningen. <p></p>
 
funksjonen.  Dette gir stigningstallet til tangen i punktet (x,y). Dette gir et bilde av hvordan grafene til løsningsfunksjonene ser ut og kalles et retningsdiagram for differensialligningen. <p></p>

Revisjonen fra 30. apr. 2013 kl. 03:26

En differensialligning vil typisk beskrive en forandring av en variabel i tid og/eller rom. Den skiller seg fra "vanlige" ligninger ved at løsningene er funksjoner, ikke bestemte verdier. Teorien for differensialligninger er fundamental for forståelsen av dynamikken i naturen og danner grunnlaget for blant annet klassisk mekanikk og kvantemekanikk. Vi deler diff.ligningene inn i partielle og ordinære ligninger, der matematikken i videregående skole kun fokuserer på ordinære ligninger, ofte kalt ODE (Ordinary Differential Equations). Dvs. at løsningsfunksjonen kun har én variabel, som oftest kalt $t$ (for tid) eller $x$ (for rom). Det er vilkårlig hvilken notasjon vi bruker så lenge vi er bevisst på hva som er den ukjente funksjonen og hva som er variabelen.


  • På ungdomstrinnet og videregående grunnkurs arbeidet man med ligninger der den ukjente var et tall, ofte kalt $x$.
  • I differensialligninger er den ukjente en funksjon $y(x)$. En differensialligning gir sammenhengen mellom en ukjent funksjon og noen av dens deriverte.
  • I denne artikkelen skriver vi $y^\prime$ og $\frac{dy}{dx}$ om hverandre. Den siste skrivemåten kalles Leibniz' notasjon etter den tyske filosofen og matematikeren Gottfried Wilhelm Leibniz.
  • Man bør være fortrolig med ligninger, funksjonslære, integrasjon og derivasjon før man gir seg i kast med differensialligninger.
  • Ligningene er viktige i fysikk og andre fag, der de kan brukes til å modellere forskjellige fysiske situasjoner.


Ordenen til en diff.ligning

Formelt vil en ordinær diff.ligning være på formen <math>g(x,f,f^\prime ,f^{\prime \prime},\ldots , f^{(n)})=0</math> der <math>g</math> er en gitt funksjon. <math>n</math> kalles ligningens orden og <math>f^{(n)}</math> er den n-te deriverte. <math>f</math> er her den ukjente funksjonen som vi ønsker å finne, og <math>x</math> er variabelen som vi deriverer med hensyn på, dvs. <math>f^\prime \equiv \frac{df}{dx}</math>, <math>f^{\prime \prime} \equiv \frac{d^2f}{dx^2}</math>, etc.


Eksempel på diff.ligning av første orden

En enkel ordinær differensialligning av første orden er <math>f^{\prime}(x)=0</math>. Løsningen finnes direkte ved integrasjon; vi får at <math>f(x)=c</math> for en konstant <math>c</math>.


Eksempel på diff.ligning av 2.orden

En enkel andreordens ordinær differensialligning er <math>m\ddot{x}(t)=10</math>. Dette er Newtons andre lov med konstant kraft (10 N) der <math>x(t)</math> er posisionen ved tida <math>t</math>. De to prikkene over <math>x</math> betyr at vi dobbeltderiverer <math>x</math> med hensyn på tiden.


Førsteordens lineære ligninger

Lineære differensialligninger av første orden kan skrives på formen

\begin{equation} \label{linearEqFirstOrder} y' + ay = b \end{equation}

Her er $a$ og $b$ enten gitte konstanter, eller funksjoner av $x$. At en ligning er av første orden betyr at den inneholder den førstederiverte, $y'$, men ikke deriverte av høyere orden ($y^{\prime\prime}$, $y^{(3)}$ etc.). At en ligning er lineær betyr at $y$ og $y'$ inngår som lineære faktorer i leddene. Ligningen $y'+y^2=3$ vil f.eks. ikke være lineær siden vi har et ledd med $y^2$.


Homogene og inhomogene førsteordens diff.ligninger

Dersom $b\neq 0 $ i ligning \ref{linearEqFirstOrder} kalles den inhomogen. Dersom $b = 0$ kalles diff.ligningen homogen. En homogen, lineær diff.ligning av første orden er altså på formen

\begin{equation} \label{linearHomEqFirstOrder} y' + ay = 0 \end{equation}

Slike ligninger kan løses på to måter:


  • Multiplikasjon med integrerende faktor
  • Som en separabel ligning


Integrerende faktor

Eksempel: Homogen ligning, integrerende faktor

Vi skal løse $y'+2y = 0$. Integrerende faktor er $e^{2x}$.

\begin{align*} y'+2y & = 0 \\ e^{2x}y'+2e^{2x}y & = 0 \quad \text{Multiplisert med integrerende faktor}\\ (e^{2x}y)' & = 0 \\ e^{2x}y & = C \\ y & = Ce^{-2x} \end{align*}

For å finne ut hva $C$ er trenger man i tillegg en initialbetingelse (startbetingelse) på løsningen. Det behandles i avsnittet om Initialverdiproblemer.


Eksempel: Inhomogen ligning, integrerende faktor

Vi skal løse $y'+4y = 6$. Integrerende faktor er $e^{4x}$.

\begin{align*} y'+4y & = 6 \\ e^{4x}y'+4e^{4x}y & = 6e^{4x} \quad \text{Multiplisert med integrerende faktor}\\ (e^{4x}y)' & = 6e^{4x} \\ e^{4x}y & = \int 6e^{4x}\,dx\\ e^{4x}y & = \frac{3}{2}e^{4x}+C\\ y & = \frac{3}{2}+Ce^{-4x} \end{align*}

For å finne ut hva $C$ er trenger man i tillegg en initialbetingelse (startbetingelse) på løsningen.


Separable differensiallikninger

Separable ligninger er på formen

\begin{equation} \label{separableDiffEq} \frac{dy}{dx} = g(x)\cdot h(y) \end{equation}

, der $g(x)$ og $h(y)$ er gitte funksjoner som vanligvis er relativt enkle å integrere. Merk at funksjonsargumentet til $h(y)$ er den funksjonen vi skal finne, men vi behandler likevel $y$ som en vanlig variabel. Ligningen løses ved å multiplisere med differensialet $dx$ på begge sider av likhetstegnet, dividere med $h(y)$, for så å integrere. Vi kan løse en generell separabel ligning formelt slik:

\begin{align*} \frac{dy}{h(y)} &= g(x)\,dx \\ \int \frac{dy}{h(y)} &= \int g(x)\,dx \\ F(y) &= G(x) + C \\ y(x) &= F^{-1}\left(G(x) + C\right) \end{align*}

, der $F(y)$ er integralet av $(h(y))^{-1}$ og $G(x)$ integralet av $f(x)$. $C$ er en integrasjonskonstant og $F^{-1}$ er inversfunksjonen til $F$.


Eksempel: Separabel ligning

Vi skal løse ligningen $y'+4xy=0$ som en separabel ligning. Da er det lurt å bruke Leibniz' notasjon. Vi omskriver til: \begin{align*} \frac{dy}{dx} &=-4xy \\ \frac{dy}{y} &=-4x\,dx \\ \int{\frac{dy}{y}} &=\int{-4x\,dx} \\ \ln|y| &= -2x^2 + C \\ y &= e^{-2x^2 + C} \\ y &= y_0 \cdot e^{-2x^2} \end{align*}

Her har vi omdøpt konstanten foran eksponentialfunksjonen, slik at $y_0=e^C$. Ved å sette løsningen inn i den opprinnelige diff.ligningen, ser vi at løsningen stemmer.


Homogene lineære 2.ordens diff.ligninger med konstante koeffisienter

En generell 2.ordens diff.ligning er på formen

<math>A(x)y^{\prime\prime} + B(x)y' + C(x)y = D(x)</math>

En ligning er homogen når D(x) = 0. Det gir oss

<math>A(x)y^{} + B(x)y' + C(x)y = 0</math>

Konstante koeffisienter betyr at A(x), B(x) og C(x) ikke er variabler men konstanter. Vi skriver ligningen på formen:

<math>y^{} + by' + cy = 0</math>

En eventuell konstant foran den dobbelderiverte fjernes med divisjon.

Andreordens betyr at den dobbelderiverte opptrer i ligningen. I en tredjeorden ligning vil den tredjederiverte opptre.

Lineær betyr at produkter eller potenser av y og dens deriverte ikke eksisterer i ligningen. ( y = yy' er således et eksempel på en ikkelineær ligning.)

(1) y + by' + cy = 0

Ligningen

r2 + br + c = 0

kalles den karakteristiske ligningen til differensialligningen i (1).

Dette gir tre mulige løsninger:


  • To reelle røtter
  • En reel rot
  • To komplekse røtter

Dersom ligningen har to reelle røtter gir det generell løsning

<math>y(x) = C_1e^{r_1x} + C_2e^{r_2x}</math>

Eks. 5:

<math> y^{,,} + y^{,} = 2y \\ y^{,,} + y^{,} - 2y = 0 \\ r^2 + r - 2 = 0 \\ r = 1 \wedge r = 2 \\ y(x) = C_1e^x + C_2e^{2x}</math>

Test deg selv


Dersom ligningen har en reel rot blir løsningen på formen

<math>y(x) = C_1e^{rx} + C_2xe^{rx}</math>


Eks. 6:

<math>4y^{,,} + 8y^{,} + 4y =0 \\r^2 + 2r + 1 = 0 \\r = -1\\y(x) = C_1e^{-x} + C_2xe^{-x}</math>

Test deg selv

Dersom ligningen har to koplekse røtter,<math>r_1 = a + ib og r_2 = a - ib</math> blir løsningen

<math>y(x) = e^{ax}(C_1 cos(bx) + C_2 sin (bx))</math>

Eks. 7:

<math>y^{,,}-y^, + y = 0 \\ r^2 - r + 1= 0 \\ r_1 = \frac12 + \frac32i r_2 = \frac12 - \frac32i')\\ y(x) = e^{\frac12x}(C_1 cos(\frac32x) + C_2 sin (\frac32x))</math>

Test deg selv


Initialverdiproblemer

I eksemplene over (og senere) ser man at den generelle løsningen inneholder en eller to konstanter C1 og C2. Disse kan i utgangspunktet være et hvilket som helst reelt tall. For å finne den spesielle løsningen til en ligning trenger man en eller flere tileggsopplysninger.

Når en differensialligning er gitt med initialbetingelser kalles det for et initialverdiproblem.

Initialbetingelsen(e) kan være knyttet til situasjonen ved tiden t = 0, altså når en prosess starter, eller den kan gis i form av en funksjonsverdi for en annen argumentverdi.

Eks 8:

Finn den spesielle løsningen til initialverdiproblemet:

<math>\frac{dy}{dx} = 3x + 2 \hspace{50 mm} y (1)= 3 \\ dy = (3x + 2)dx \\ y(x) = \int (3x + 2)dx \\ y(x) = \frac 32x^2 + 2x + c </math>

Dette er den generelle løsningen.

For å finne den spesielle løsningen benytter vi opplysningen

y(1) = 3.

<math>y(1) = \frac 32 \cdot 1^2 + 2 \cdot 1 + c = 3 \\ C = - \frac 12 </math>

Den spesielle løsningen blir:

<math>y(x) = \frac 32 \cdot x^2 + 2 x - \frac 12 </math>


Retningsdiagram

Førsteorden ligninger kan skrives som y'(x) = F(x,y) der x er den variable og y er den ukjente

funksjonen. Dette gir stigningstallet til tangen i punktet (x,y). Dette gir et bilde av hvordan grafene til løsningsfunksjonene ser ut og kalles et retningsdiagram for differensialligningen.

På engelske er betegnelsen "slope field".

Eks 9:

Gitt er ligningen y' = 2

Man observerer at stigningstallet til y(x) er 2 for alle x. Løsningen på ligningen er en eller

annen rett linje med stigningstall 2. Et retningsdiagram illustrerer dette:

Rettning1.png

Dersom man løser ligningen y' = 2

Får man y = 2x + C, når man integrerer på begge sider.

Man ser nå at retningsdiagrammet stemmer, C skyver grafen opp eller ned i koordinatsystemet. Verken x eller y har noen betydning for grafens form. Diagrammet indikerer en løsning for y = 2x + 1

Eks 10

Gitt er ligningen y' = x + 1

Man observerer at stigningstallet til y(x) varierer med varierende x verdi, og er null for x = -1. Det gir følgende retningsdiagram:

Rettning2.png

Dersom man løser ligningen y' = x + 1

Får man

<math> y = \frac 12x^2 + x + c </math>

når man integrerer på begge sider.

Retningsdiagrammet indikerer at løsningen er en parabel med minimum i x = -1


Tilbake til R2 Hovedside