1T 2013 høst LØSNING
Fra Matematikk.net
Diskusjon av denne oppgaven på matteprat
DEL EN
Oppgave 1:
$7,5 \cdot 10^{12} \cdot 4,0 \cdot 10^{-4} = 30 \cdot 10^{12+(-4)} = 30 \cdot 10^8 = 3,0 \cdot 10^9$
Oppgave 2:
a)
Blå bukser | Svarte bukser | Total | |
---|---|---|---|
Bukser som passer | $3$ | $3 $ | $6$ |
Bukser som ikke passer | $1$ | $3$ | $4$ |
Total | $4$ | $6$ | $10$ |
b)
P (buksa passer) =$\frac {6}{10}$ = 60%
Det er 60% sjanse for at buksa passer.
c)
P ( blå bukse, gitt at den passer) = $\frac 36 = \frac 12 = $ 50%
Det er 50% sjanse for at buksa er blå, når vi vet at hun har trukket en bukse som passer.
Oppgave 3:
$\frac {2x^2-18}{x^2+6x+9} = \frac {2(x+3)(x-3)}{(x+3)(x+3)} = \frac{2(x-3)}{x+3}$
Oppgave 4:
$ frac{\sqrt 2 \cdot 2^0 \cdot 2{-1}}{8^{\frac12} \cdot 2^{-2}} = frac{2^{\frac 12} \cdot 2^{-1}}{2^{\frac 32}\cdot 2^{-2}} = $