Radian: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Mstud (diskusjon | bidrag)
m Link
Martin (diskusjon | bidrag)
Ingen redigeringsforklaring
Linje 1: Linje 1:
En radian er et vinkelmål der en hel omdreining rundt en sirkel er 2π radianer (to multiplisert med tallet pi). Det er derfor 360° per 2π radianer. Sammenhengen mellom grader og radianer er derfor:
En radian er et vinkelmål der en hel omdreining rundt en sirkel er 2π radianer (to multiplisert med tallet pi). Det er derfor 360° per 2π radianer. Sammenhengen mellom grader og radianer er derfor:
[[ Bilde:Sirkelsegment.gif|right]]
[[ Bilde:Sirkelsegment.gif|right]]
<tex>radianer \quad = \quad grader \cdot \frac{\pi}{180} </tex>
<tex>\text{radianer } = \text{ grader} \cdot \frac{\pi}{180} </tex>


Buelengden b til et sirkelsegment med radius r utgjør b/(2πr) deler av omkretsen til sirkelen. Vinkelen, i radianer, til et sirkelsegment er derfor gitt ved b/r - se figuren.
Buelengden b til et sirkelsegment med radius r utgjør b/(2πr) deler av omkretsen til sirkelen. Vinkelen, i radianer, til et sirkelsegment er derfor gitt ved b/r - se figuren.

Sideversjonen fra 7. jan. 2012 kl. 10:50

En radian er et vinkelmål der en hel omdreining rundt en sirkel er 2π radianer (to multiplisert med tallet pi). Det er derfor 360° per 2π radianer. Sammenhengen mellom grader og radianer er derfor:

<tex>\text{radianer } = \text{ grader} \cdot \frac{\pi}{180} </tex>

Buelengden b til et sirkelsegment med radius r utgjør b/(2πr) deler av omkretsen til sirkelen. Vinkelen, i radianer, til et sirkelsegment er derfor gitt ved b/r - se figuren.


Vinkel