Modellering: Forskjell mellom sideversjoner
Fra Matematikk.net
Modellering flyttet til Regresjon |
Ingen redigeringsforklaring |
||
Linje 1: | Linje 1: | ||
Modellering er en del av statistisk analyse der man fra en mengde målepunkter prøver å finne en matematisk sammenheng mellom variabler (parametre) og målinger. | |||
Når man lager modeller har man i mange tilfeller bruk for et grafisk hjelpemiddel som kan gjøre grovarbeidet. Til dette brukes vanligvis grafiske kalkulatorer på skolen. Et gratis alternativ er [http://www.geogebra.org/cms/ Geogebra]. | |||
Statistisk modellering har anvendelser i mange praktiske fag, som fysikk, kjemi, økonomi og ingeniørfag. | |||
Hovedfokuset i fagene i videregående skole er å fra målepunktene kunne virdere hvilken type funksjon som best vil beskrive sammenhengen mellom parametre og målinger. | |||
===Teknikker for modellering=== | |||
===Korrelasjonskoeffesienten=== | |||
===Minste kvadraters avvik=== | |||
[[Bilde:Reg1.png]] [[Bilde:Reg2.png]] | |||
===Avvikende målepunkter=== | |||
[[Bilde:Reg6.png]] | |||
==Lineær modellering== | |||
[[Bilde:Reg1.png]] | |||
==Ikke-lineær modellering== | |||
===Polynomisk modellering=== | |||
[[Bilde:Reg3.png]] | |||
===Eksponentiell modellering=== | |||
[[Bilde:Reg4.png]] | |||
===Sinusoidal modellering=== | |||
[[Bilde:Reg5.png]] |
Sideversjonen fra 27. jan. 2010 kl. 18:44
Modellering er en del av statistisk analyse der man fra en mengde målepunkter prøver å finne en matematisk sammenheng mellom variabler (parametre) og målinger.
Når man lager modeller har man i mange tilfeller bruk for et grafisk hjelpemiddel som kan gjøre grovarbeidet. Til dette brukes vanligvis grafiske kalkulatorer på skolen. Et gratis alternativ er Geogebra.
Statistisk modellering har anvendelser i mange praktiske fag, som fysikk, kjemi, økonomi og ingeniørfag.
Hovedfokuset i fagene i videregående skole er å fra målepunktene kunne virdere hvilken type funksjon som best vil beskrive sammenhengen mellom parametre og målinger.