Likningsett: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 1: Linje 1:
Et likningssett er en samling (to eller flere) likninger i én eller flere variabler. Lineære likningsett er likningssett på formen [Tex kommer her]. Vanlige løsningsmetoder for slike likningssett er substitisjonsmetoden, addisjonsmetoden og gausseliminering.
Et likningssett er en samling (to eller flere) likninger i én eller flere variabler.  


==Lineære likningssett==  
==Lineære likningssett==  
Lineære likningsett er likningssett på formen [Tex kommer her]. Vanlige løsningsmetoder for slike likningssett er substitisjonsmetoden, addisjonsmetoden og gausseliminering.
===Løsningsmetoder===
===Løsningsmetoder===
====Innsettingsmetoden====
====Innsettingsmetoden====

Sideversjonen fra 21. feb. 2009 kl. 21:38

Et likningssett er en samling (to eller flere) likninger i én eller flere variabler.

Lineære likningssett

Lineære likningsett er likningssett på formen [Tex kommer her]. Vanlige løsningsmetoder for slike likningssett er substitisjonsmetoden, addisjonsmetoden og gausseliminering.

Løsningsmetoder

Innsettingsmetoden

Addisjonsmetoden

Gausseliminering

Tilnærmingsmetoder

Av og til er likningssett for kompliserte til å løse nøyaktig, eller man ønsker seg bare tilnærminger til de korrekte svarene.

Grafisk løsning

Denne metoden fungerer kun for likningssett i to variabler.



Ligningen 2X + 7 = 13 har en ukjent, x, og løses lett med metodene beskrevet i kapittelet om ligninger med en ukjent (kapittel 8).

Vi kan ha flere ukjente, for eksempel to.

Y = 2X + 1 Her er både X og Y ukjente.

Ligningen har uendelig mange løsninger. Ligningen er et funksjonsutrykk for en rett linje.

Dersom ligninger med flere ukjente skal ha entydige løsninger må man ha like mange ligninger som man har ukjente.
Dersom vi har to ligninger med to ukjente, kalles dette et sett med ligninger, eller et ligningssett.
Y = 2X + 1
Y = - X + 4
Ligningen (1) og (2) hører sammen. Målet er å finne en X- verdi og en Y- verdi som passer i både (1) og (2).
Det finnes tre forskjellige måter å løse ligningssettet på. [feil - det finnes mange flere. Metodene over, cramers regel, etc. Grafisk løsning er kun en tilnærmingsmetode, og bør ikke nevnes sammen med de to andre] Vi skal se på alle tre metodene.
addisjonsmetoden
innsettingsmetoden
grafisk løsning
Dersom du får i oppgave å løse et ligningsett er det likegyldig hvilken metode du bruker, alle tre gir samme svar. Du bør allikevel beherske alle metodene da du ofte blir bedt om å løse ligningssettet ved hjelp av en spesiell metode.