1T 2010 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Martin (diskusjon | bidrag)
Ingen redigeringsforklaring
 
(91 mellomliggende versjoner av 4 brukere er ikke vist)
Linje 1: Linje 1:
[http://ndla.no/nb/node/95939?fag=54 Løsning fra NDLA]
[http://folk.ntnu.no/oistes/Eksamen%20-%20VGS/1T/T1%20V10(6).pdf Løsning fra Nebu (pdf)]
= Del 1 =
= Del 1 =


Linje 5: Linje 8:


=== a) ===
=== a) ===
[[Fil:2010a1.png]]<p></P>
Nullpunkt ved regning:<p></p>
<math>f(x) = 0 \\ -2x+3 = 0 \\-2x= -3 \\x= \frac 32</math>
<p></p> Ved inspeksjon ser man at dette stemmer med grafen.


=== b) ===
=== b) ===
<math>x^2 + 8x = -15 \\ x^2 +8x + 15 =0 \\ x = \frac{-8 \pm \sqrt{8^2-4 \cdot 1 \cdot 15}}{2 \cdot1} \\x= \frac{-8 \pm 2}{2} \\ x = -5 \vee x=-3</math>


=== c) ===
=== c) ===
<math>5 -2^4 \cdot(4-3)^3 \cdot 2^{-3}= \\ 5-16 \cdot 1^3 \cdot \frac 18 =\\ 5- \frac{16}{8} = 3</math>


=== d) ===
=== d) ===
<math> \frac{4a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} =\frac{2^2a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} = 2^{2-1}a^{\frac 13 + \frac 12 -(- \frac 16)} = 2 a^{\frac 26 + \frac 36 + \frac 16}  = 2a</math>


=== e) ===
=== e) ===
<math>f(x)= -2x^3+8x+4 \\ f'(x) = -6x + 8 \\ f'(1) = -6+8=2 \\ f(1) = 10 \\ y= ax+b \\ y=2x+b \\ \text{punktet} \quad (1,f(1)) \Rightarrow 10 = 2 + b \\ b = 8 \\ \text{Likning for tangent:}  y=2x+8</math>


=== f) ===
=== f) ===


Faktoriserer uttrykket vha konjugatsetningen og regelen for faktorisering av fullstendig kvadrat, forkorter deretter uttrykket ved å stryke samme faktorer i teller og nevner:
Faktoriserer uttrykket ved hjelp av konjugatsetningen og regelen for faktorisering av fullstendig kvadrat, forkorter deretter uttrykket ved å stryke samme faktorer i teller og nevner:


<tex>\frac {x^2-9}{x^2+6x+9}=\frac {(x+3)\cdot (x-3)}{(x+3)(x+3)}=\frac {\cancel{(x+3)}\cdot (x-3)}{\cancel{(x+3)}(x+3)} =\frac {x-3}{x+3}</tex>
<math>\frac {x^2-9}{x^2+6x+9}=\frac {(x+3)\cdot (x-3)}{(x+3)(x+3)}=\frac {\cancel{(x+3)}\cdot (x-3)}{\cancel{(x+3)}(x+3)} =\frac {x-3}{x+3}</math>


=== g) ===
=== g) ===


<tex>lg(2x +4) = 3lg2 \Leftrightarrow lg(2x+4)=lg(2^3) \Leftrightarrow 2x+4=2^3 \Leftrightarrow 2x+4=8 \Leftrightarrow 2x=8-4 \Leftrightarrow 2x=4 \Leftrightarrow x= \frac 42 \Leftrightarrow x=2 </tex>
<math> \log(2x +4) = 3 \log 2 \Leftrightarrow \log (2x+4)= \log(2^3) \Leftrightarrow 2x+4=2^3 \Leftrightarrow 2x+4=8 \Leftrightarrow 2x=8-4 \Leftrightarrow 2x=4 \Leftrightarrow x= \frac 42 \Leftrightarrow x=2 </math>


=== h) ===
=== h) ===
Linje 28: Linje 39:
''' 1) '''
''' 1) '''


Sannsynligheten er:
Sannsynligheten for at pilen peker enten på blått eller grønt felt når hjulet stopper er:


<tex> P=\frac 38 + \frac 28 = \frac 58 </tex>
<math> P=P(B)+P(Gr)=\frac 38 + \frac 28 = \frac 58=0,625 =62,5 </math>%


''' 2) '''
''' 2) '''
Sannsynligheten for at pilen peker en gang på gult felt og en gang på grønt felt når hjulet snurres to ganger, er:
<math>P(Gul)\cdot P(Gr) +P(Gr)\cdot P(Gul) =\frac 18 \cdot \frac 28 + \frac28  \cdot \frac 18= \frac {4}{64}=\frac {1}{16}</math>


=== i) ===
=== i) ===
[[Fil:2010i1.png]]


== Oppgave 2 ==
== Oppgave 2 ==


=== a) ===
=== a) ===
[[Fil:2010a2.png]]


=== b) ===
=== b) ===
<math> g(x) = ax^2+bx+c \\ g(0) = -4 \Rightarrow C= -4 \\ g(x) = ax^2+bx-4 \\ g(2)= 0 \Rightarrow 4a+2b-4=0 \\ g(-2) =0 \Rightarrow 4a-2b-4 =0 </math> <p></p>
Legger sammen de to likningene og får:<p></p>
8a-8=0<p></p>
a=1
Innsatt i 4a + 2b- 4 = 0 <p></p>
Gir b=0, funksjonsuttrykket blir da<p></p>
<math>g(x)= x^2-4</math>


= Del 2 =
= Del 2 =
Linje 48: Linje 73:
=== a) ===
=== a) ===


Siden trekant ACD er rettvinklet er det greit å finne lengden AC ved hjelp av Pytagoras setning:
Siden trekant <math>ACD</math> er rettvinklet er det greit å finne lengden <math>AC</math> ved hjelp av Pytagoras setning:


<tex> AC^2=AD^2+CD^2 \Leftrightarrow AC=\sqrt{AD^2+CD^2} =\sqrt{(3,0 m)^2 + (5,0 m)^2}=\sqrt{9,0 m^2 + 25 m^2}=\sqrt{34 m^2} \approx 5,8 m</tex>
<math> AC^2=AD^2+CD^2 \Leftrightarrow AC=\sqrt{AD^2+CD^2} =\sqrt{(3,0 m)^2 + (5,0 m)^2}=\sqrt{9,0 m^2 + 25 m^2}=\sqrt{34 m^2} \approx 5,8 m</math>


=== b) ===
=== b) ===


Når trekant <tex>BCD</tex> er likebeint (to av sidene er like lange), vet vi at også to av vinklene må være like lange. Vinkelsummen i en trekant er alltid 180 grader, så siden vinkel <tex>C</tex> er kjent kan vi regne ut de andre to:
Cosinussetningen:  


<tex> \angle B=\angle D = \frac {180 ^\circ - \angle C}2 =\frac {180 ^\circ - 120 ^\circ }2= \frac {60 ^\circ}2= 30 ^\circ </tex>
<math>BD^2 = (5m)^2 + (5m)^2 - 2 \cdot 5m \cdot 5m \cdot Cos 120^{\circ}= 75m^2 \\BD = 8,7m</math>


Når vi kjenner størrelsen på denne vinkelen, kan vi finne <tex>BD</tex> ved hjelp av sinussetningen:
=== c) ===
 
[[Fil:2010opg3.PNG]]<p></p>
<tex>\frac {BD}{\sin \angle C}=\frac {CD}{\sin \angle B} \Leftrightarrow BD=\frac {CD \cdot \sin \angle C}{\sin \angle B}=\frac{5.0 \text{m} \cdot \sin (120 ^\circ)}{\sin (30 ^\circ)}=\frac {5.0 \text{m} \cdot \frac {\sqrt 3}2}{\frac 12}=5\sqrt 3 \text{m} \approx 8.66 \text{m} \approx 8.7 \text{m}</tex>
Areal trekant ACD: <math>A= \frac {3,0m \cdot 5,0m}{2}= 7,5m^2</math>
<p></p>
For å finne arealet av de tre andre trekantene trenger man å finne en del størrelser.
<p></p>Bruker tangens og finner at:<p></p>
Vinkel CAD = 59,04 grader<p></p>
Vinkel DCA = 30,96 grader<p></p>
Det fører til at<p></p>
Vinkel BAE = 40,96 grader og <p></p>
Vinkel ACB = 89,04 grader<p></p>
Trekanten BCD er likebeint hvilket betyr at vinkel CBE = EDC = 30 grader.<p></p><br>
Areal trekant BCD: <math>A= \frac 12 \cdot 5m \cdot 5m \cdot sin 120^{\circ}= 10,83m^2</math>
<p></p><br>
Areal trekant ABD: <math>A = \frac 12 \cdot 3m \cdot \sqrt{75}m \cdot sin60^{\circ} = 11,22m^2</math>


=== c) ===
<p></p><br>
Areal trekant ABC: <math>A = \frac 12 \cdot 5m \cdot 7,6 m  \cdot sin50^{\circ} = 14,55m^2</math>


''' 1) '''
''' 1) '''<p></p>
OVE: ABD + BCD = <math>11,22m^2 + 10,83m^2 \approx 22,1m^2</math>


''' 2) '''
''' 2) '''<p></p>
TOMMY: ABC + ACD =<math>14,55m^2 + 7,5m^2 \approx 22,1m^2</math> <p></p>


== Oppgave 4 ==
== Oppgave 4 ==


=== a) ===
=== a) ===
Bruker fartsformelen <math>s=vt</math>, der <math>s</math> er strekningen Arne har syklet, <math>v</math> er farten han sykler med, og <math>t</math> er tiden han har brukt:
<math>s=s_1+s_2=v_1 \cdot t_1 + v_2 \cdot t_2 =  \\ 12 \text{km/t} \cdot \frac {30 \text{min}}{60 \text{min}} + 18 \text{km/t} \cdot \frac {15 \text{min}}{60 \text{min}}= \\ 12 \text{km/t} \cdot \frac 12 \text{t}+ 18 \text{km/t} \cdot \frac 14 \text{t} = \\ 6 km + 4,5 km = 10,5 km</math>


=== b) ===
=== b) ===
[[Fil:2010b4.png]]


=== c) ===
=== c) ===


Funksjonsuttrykket for de første 30 minuttene er:
<math>y=\frac {12}{60}x= \frac 15 x=0,20x</math> gjelder når <math>x \in \left[0,30\right] </math> (sagt med ord: når <math>x</math> er fra og med 0 til og med 30).
Funksjonsuttrykket for de neste 30 minuttene er:
<math>y=ax+b \\ a=\frac {18}{60} = 0,3 \\ 6 = 0,3 \cdot 30 +b \\ b= -3 \\ y=0,3x-3 </math>
gjelder når <math>x \in \left\langle30,60\right] </math>


== Oppgave 5 ==
== Oppgave 5 ==


=== a) ===
=== a) ===
Lager krysstabell, setter inn verdiene fra oppgaven og regner ut de andre slik at tabellen blir fullstendig:
<table border="1" cellpadding="10">
<tr>
  <td> </td>
  <td>'''Briller ''B'' '''</td>
  <td>'''Ikke briller ''<math>\bar{B}</math>'' '''</td>
  <td>'''Sum '''</td>
</tr>
<tr>
  <td>'''Kontaktlinser ''L'' '''</td>
  <td> <math>9,7 \percent</math> </td>
  <td> <math>7,2 \percent</math> </td>
  <td> <math>9,7 \percent +7,2 \percent=16,9 \percent</math> </td>
</tr>
<tr>
  <td>'''Ikke kontaktlinser ''<math>\bar{L}</math>'''</td>
  <td> <math>14,3 \percent</math> </td>
  <td> <math>100 \percent - (14,3 \percent +7,2 \percent+ 9,7 \percent)=68,8 \percent</math> </td>
  <td> <math>100 \percent -16,9 \percent =83,1 \percent</math> </td>
</tr>
<tr>
  <td> '''Sum''' </td>
  <td> <math>24,0 \percent</math> </td>
  <td> <math>100\percent -24,0 \percent =76,0 \percent</math> </td>
  <td> <math>100 \percent</math> </td>
</tr>
</table>


=== b) ===
=== b) ===
Som vi regnet ut i tabellen i ''' a) ''' er sannsynligheten for at en person ikke bruker briller <math>76,0 \percent</math>.


=== c) ===
=== c) ===
Sannsynligheten for at en person som bruker briller også bruker kontaktlinser er:
<math>\frac{9,7\percent \cdot 100}{24 \percent}=40,4 \percent</math>


== Oppgave 6 ==
== Oppgave 6 ==


=== a) ===
=== a) ===
[[Fil:2010a6.png]]


=== b) ===
=== b) ===
Grafen har nullpunkt når <math>f(x)=0,5x^2-2x=0</math>. Løser likningen <math>0,5x^2-2x=0</math> for å finne nullpunktene:
<math>0,5x^2-2x=0 \Leftrightarrow x(0,5x-2)=0. \ \\ \text{Produktsetningen gir da at x=0 eller 0,5x-2=0. Det vil si at } x=0 \ eller \ 0,5x-2=0 \\ \Leftrightarrow 0,5x=2 \Leftrightarrow x=4</math>.
Altså er <math>f(x)=0</math> når <math>x=0</math> og <math>x=4</math>. Dette kan kontrolleres ved å finne verdien av f(x) når x=0, og når x=4 ved å sette inn henholdsvis 0 og 4 for x i likningen:
<math>f(0)=0,5 \cdot 0^2 -2\cdot 0=0</math>
<math>f(4)=0,5\cdot 4^2 - 2\cdot 4=0,5\cdot 16 -8=8-8=0</math>
Det stemmer, altså er nullpunktene til funksjonen(på formen <math>(f(x),x)</math>): (0,0) og (4,0).
Ekstremalpunkt.
Man observerer at dette er en parabel som vender den hule siden opp (smiler), fordi tallet foran x i andre er positivt. Ekstremalpunktet er et minimumspunkt.
<Math> f '(x) = 0 \\ x-2 = 0 \\x = 2 \\ f(2) = 2-4 =-2</Math>
Minimumspunkt (2, -2)


=== c) ===
=== c) ===
<math>f'(x) = x-2 \\ f'(1) = 1-2 = -1 </math>
Stigningstallet til tangenten i (1, f(1)) er -1.


=== d) ===
=== d) ===
<math>f'(x)=1 \\ x-2=1 \\ x=3 \\ f(3)= 4,5-6 = -1,5 \\ y=ax+b \\ -1,5 = 1 \cdot 3 + b \\ b= -4,5 \\ y= x - 4,5</math>


== Oppgave 7 ==
== Oppgave 7 ==


=== Alternativ I ===
=== Alternativ I ===
==== a) ====


==== a) ====
<math>\left[{ 2y-x^2+2x=a \\ y-2x=3 }\right]</math>


''' 1) '''
''' 1) '''
''' 2) '''
 
Når a=6, er likningssettet: <math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 }\right]</math>. Dette kan f.eks løses ved å 
 
<math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 |\cdot -2}\right] \Leftrightarrow \left[{ (2y-x^2+2x=6) \\ \\+ \\ \\ (-2y+4x=-6)}\right] \Leftrightarrow 2y-2y-x^2+2x+4x=6-6 \Leftrightarrow -x^2+6x=0 x(6-x)=0 \Leftrightarrow x=0 \ eller \ x=6</math>
 
Hvis x=0, er <math>y=2x+3=2\cdot 0+3=3</math> eller hvis x=6, er <math>y=2x+3=2\cdot 6+3=15</math>.
 
 
 
''' 2) '''<p></p>
[[Fil:2010a27.png]]


==== b) ====
==== b) ====
Setter inn x=1 og y=5 i den øverste likningen i likningssettet og løser for a:
<math>a=2y-x^2+2x=2\cdot 5-1^2+2\cdot 1=10-1+2=11</math>. Altså må a være lik 11 for at x=1 og y=5 skal være en løsning til likningen.


==== c) ====
==== c) ====
<math>2y-x^2+2x=a \Rightarrow y= 0,5x^2-x+ \frac a2 \\ y-2x=3 \Rightarrow y=2x+3 \\ \text{Setter funksjonene lik hverandre} \\ 0,5x^2-x+ \frac a2 = 2x+3 \\ 0,5x^2-3x+( \frac a2-3) =0 </math>
Dersom man får null under rottegnet i abc formelen har man en løsning. Dersom man får et negativt tall under rottegnet har man ingen løsning. To løsninger får man når uttrykket under rottegnet er positivt.<p></p>
<math>b^2-4ac =0 \\ 9- 4 \cdot 0,5( \frac a2 - 3) =0 \\ 9-a + 6= 0 \\ a=15</math>
<p></p>Man observerer at når a er større enn 15 er uttrykket negativt og likningsettet har ingen løsning.<p></p> Når a = 15 har det en løsning. <p></p>
Når a er mindre enn 15 har settet to løsninger.


=== Alternativ II ===
=== Alternativ II ===


==== a) ====
==== a) ====
Vi deler opp arealet i to. Huset består av et kvadrat med areal <math>a \cdot a =a^2</math><p></p>
og et rektangel med areal <math>3a(10-a) = 30a-3a^2</math> <p></p>
Det totale arealet blir da: <math>a^2 +(30a-3a^2) = 30a-2a^2 </math>
<p></p>
<br>
<math>a=5 \Rightarrow 30 \cdot 5 - 2 \cdot 5^2 = 100</math> kvadratmeter


==== b) ====
==== b) ====
<math>F(a) = 30a- 2a^2 \\ F(a) = 112 \\ -2a^2+30a -112 = 0 \\a=7 \vee a=8</math>


==== c) ====
==== c) ====
<math>F(a) = 30a- 2a^2 \\ F'(a) = 30-4a \\F'(a) = 0 \\ 30-4a=0 \\ a=7,5 \\ F(7,5)= 112,5</math>
<p></p>
Når a = 7,5m er huset 112,5 kvadratmeter


==== d) ====
==== d) ====
<math>-2a^2+30a =72 \\ a=3 \vee a=12</math>
<p></p>Huset er større enn 72 kvadrat meter når a er større enn 3m og mindre enn 10m

Siste sideversjon per 29. okt. 2013 kl. 18:42

Løsning fra NDLA

Løsning fra Nebu (pdf)

Del 1

Oppgave 1

a)

Nullpunkt ved regning:

<math>f(x) = 0 \\ -2x+3 = 0 \\-2x= -3 \\x= \frac 32</math>

Ved inspeksjon ser man at dette stemmer med grafen.

b)

<math>x^2 + 8x = -15 \\ x^2 +8x + 15 =0 \\ x = \frac{-8 \pm \sqrt{8^2-4 \cdot 1 \cdot 15}}{2 \cdot1} \\x= \frac{-8 \pm 2}{2} \\ x = -5 \vee x=-3</math>

c)

<math>5 -2^4 \cdot(4-3)^3 \cdot 2^{-3}= \\ 5-16 \cdot 1^3 \cdot \frac 18 =\\ 5- \frac{16}{8} = 3</math>

d)

<math> \frac{4a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} =\frac{2^2a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} = 2^{2-1}a^{\frac 13 + \frac 12 -(- \frac 16)} = 2 a^{\frac 26 + \frac 36 + \frac 16} = 2a</math>

e)

<math>f(x)= -2x^3+8x+4 \\ f'(x) = -6x + 8 \\ f'(1) = -6+8=2 \\ f(1) = 10 \\ y= ax+b \\ y=2x+b \\ \text{punktet} \quad (1,f(1)) \Rightarrow 10 = 2 + b \\ b = 8 \\ \text{Likning for tangent:} y=2x+8</math>

f)

Faktoriserer uttrykket ved hjelp av konjugatsetningen og regelen for faktorisering av fullstendig kvadrat, forkorter deretter uttrykket ved å stryke samme faktorer i teller og nevner:

<math>\frac {x^2-9}{x^2+6x+9}=\frac {(x+3)\cdot (x-3)}{(x+3)(x+3)}=\frac {\cancel{(x+3)}\cdot (x-3)}{\cancel{(x+3)}(x+3)} =\frac {x-3}{x+3}</math>

g)

<math> \log(2x +4) = 3 \log 2 \Leftrightarrow \log (2x+4)= \log(2^3) \Leftrightarrow 2x+4=2^3 \Leftrightarrow 2x+4=8 \Leftrightarrow 2x=8-4 \Leftrightarrow 2x=4 \Leftrightarrow x= \frac 42 \Leftrightarrow x=2 </math>

h)

1)

Sannsynligheten for at pilen peker enten på blått eller grønt felt når hjulet stopper er:

<math> P=P(B)+P(Gr)=\frac 38 + \frac 28 = \frac 58=0,625 =62,5 </math>%

2)

Sannsynligheten for at pilen peker en gang på gult felt og en gang på grønt felt når hjulet snurres to ganger, er:

<math>P(Gul)\cdot P(Gr) +P(Gr)\cdot P(Gul) =\frac 18 \cdot \frac 28 + \frac28 \cdot \frac 18= \frac {4}{64}=\frac {1}{16}</math>

i)

Oppgave 2

a)

b)

<math> g(x) = ax^2+bx+c \\ g(0) = -4 \Rightarrow C= -4 \\ g(x) = ax^2+bx-4 \\ g(2)= 0 \Rightarrow 4a+2b-4=0 \\ g(-2) =0 \Rightarrow 4a-2b-4 =0 </math>

Legger sammen de to likningene og får:

8a-8=0

a=1

Innsatt i 4a + 2b- 4 = 0

Gir b=0, funksjonsuttrykket blir da

<math>g(x)= x^2-4</math>

Del 2

Oppgave 3

a)

Siden trekant <math>ACD</math> er rettvinklet er det greit å finne lengden <math>AC</math> ved hjelp av Pytagoras setning:

<math> AC^2=AD^2+CD^2 \Leftrightarrow AC=\sqrt{AD^2+CD^2} =\sqrt{(3,0 m)^2 + (5,0 m)^2}=\sqrt{9,0 m^2 + 25 m^2}=\sqrt{34 m^2} \approx 5,8 m</math>

b)

Cosinussetningen:

<math>BD^2 = (5m)^2 + (5m)^2 - 2 \cdot 5m \cdot 5m \cdot Cos 120^{\circ}= 75m^2 \\BD = 8,7m</math>

c)

Areal trekant ACD: <math>A= \frac {3,0m \cdot 5,0m}{2}= 7,5m^2</math>

For å finne arealet av de tre andre trekantene trenger man å finne en del størrelser.

Bruker tangens og finner at:

Vinkel CAD = 59,04 grader

Vinkel DCA = 30,96 grader

Det fører til at

Vinkel BAE = 40,96 grader og

Vinkel ACB = 89,04 grader

Trekanten BCD er likebeint hvilket betyr at vinkel CBE = EDC = 30 grader.


Areal trekant BCD: <math>A= \frac 12 \cdot 5m \cdot 5m \cdot sin 120^{\circ}= 10,83m^2</math>


Areal trekant ABD: <math>A = \frac 12 \cdot 3m \cdot \sqrt{75}m \cdot sin60^{\circ} = 11,22m^2</math>


Areal trekant ABC: <math>A = \frac 12 \cdot 5m \cdot 7,6 m \cdot sin50^{\circ} = 14,55m^2</math>

1)

OVE: ABD + BCD = <math>11,22m^2 + 10,83m^2 \approx 22,1m^2</math>

2)

TOMMY: ABC + ACD =<math>14,55m^2 + 7,5m^2 \approx 22,1m^2</math>

Oppgave 4

a)

Bruker fartsformelen <math>s=vt</math>, der <math>s</math> er strekningen Arne har syklet, <math>v</math> er farten han sykler med, og <math>t</math> er tiden han har brukt:

<math>s=s_1+s_2=v_1 \cdot t_1 + v_2 \cdot t_2 = \\ 12 \text{km/t} \cdot \frac {30 \text{min}}{60 \text{min}} + 18 \text{km/t} \cdot \frac {15 \text{min}}{60 \text{min}}= \\ 12 \text{km/t} \cdot \frac 12 \text{t}+ 18 \text{km/t} \cdot \frac 14 \text{t} = \\ 6 km + 4,5 km = 10,5 km</math>

b)

c)

Funksjonsuttrykket for de første 30 minuttene er:

<math>y=\frac {12}{60}x= \frac 15 x=0,20x</math> gjelder når <math>x \in \left[0,30\right] </math> (sagt med ord: når <math>x</math> er fra og med 0 til og med 30).


Funksjonsuttrykket for de neste 30 minuttene er:

<math>y=ax+b \\ a=\frac {18}{60} = 0,3 \\ 6 = 0,3 \cdot 30 +b \\ b= -3 \\ y=0,3x-3 </math>

gjelder når <math>x \in \left\langle30,60\right] </math>

Oppgave 5

a)

Lager krysstabell, setter inn verdiene fra oppgaven og regner ut de andre slik at tabellen blir fullstendig:

Briller B Ikke briller <math>\bar{B}</math> Sum
Kontaktlinser L <math>9,7 \percent</math> <math>7,2 \percent</math> <math>9,7 \percent +7,2 \percent=16,9 \percent</math>
Ikke kontaktlinser <math>\bar{L}</math> <math>14,3 \percent</math> <math>100 \percent - (14,3 \percent +7,2 \percent+ 9,7 \percent)=68,8 \percent</math> <math>100 \percent -16,9 \percent =83,1 \percent</math>
Sum <math>24,0 \percent</math> <math>100\percent -24,0 \percent =76,0 \percent</math> <math>100 \percent</math>

b)

Som vi regnet ut i tabellen i a) er sannsynligheten for at en person ikke bruker briller <math>76,0 \percent</math>.

c)

Sannsynligheten for at en person som bruker briller også bruker kontaktlinser er:

<math>\frac{9,7\percent \cdot 100}{24 \percent}=40,4 \percent</math>

Oppgave 6

a)

b)

Grafen har nullpunkt når <math>f(x)=0,5x^2-2x=0</math>. Løser likningen <math>0,5x^2-2x=0</math> for å finne nullpunktene:

<math>0,5x^2-2x=0 \Leftrightarrow x(0,5x-2)=0. \ \\ \text{Produktsetningen gir da at x=0 eller 0,5x-2=0. Det vil si at } x=0 \ eller \ 0,5x-2=0 \\ \Leftrightarrow 0,5x=2 \Leftrightarrow x=4</math>.

Altså er <math>f(x)=0</math> når <math>x=0</math> og <math>x=4</math>. Dette kan kontrolleres ved å finne verdien av f(x) når x=0, og når x=4 ved å sette inn henholdsvis 0 og 4 for x i likningen:

<math>f(0)=0,5 \cdot 0^2 -2\cdot 0=0</math>

<math>f(4)=0,5\cdot 4^2 - 2\cdot 4=0,5\cdot 16 -8=8-8=0</math>

Det stemmer, altså er nullpunktene til funksjonen(på formen <math>(f(x),x)</math>): (0,0) og (4,0).

Ekstremalpunkt.

Man observerer at dette er en parabel som vender den hule siden opp (smiler), fordi tallet foran x i andre er positivt. Ekstremalpunktet er et minimumspunkt.

<Math> f '(x) = 0 \\ x-2 = 0 \\x = 2 \\ f(2) = 2-4 =-2</Math>

Minimumspunkt (2, -2)

c)

<math>f'(x) = x-2 \\ f'(1) = 1-2 = -1 </math>

Stigningstallet til tangenten i (1, f(1)) er -1.

d)

<math>f'(x)=1 \\ x-2=1 \\ x=3 \\ f(3)= 4,5-6 = -1,5 \\ y=ax+b \\ -1,5 = 1 \cdot 3 + b \\ b= -4,5 \\ y= x - 4,5</math>

Oppgave 7

Alternativ I

a)

<math>\left[{ 2y-x^2+2x=a \\ y-2x=3 }\right]</math>

1)

Når a=6, er likningssettet: <math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 }\right]</math>. Dette kan f.eks løses ved å

<math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 |\cdot -2}\right] \Leftrightarrow \left[{ (2y-x^2+2x=6) \\ \\+ \\ \\ (-2y+4x=-6)}\right] \Leftrightarrow 2y-2y-x^2+2x+4x=6-6 \Leftrightarrow -x^2+6x=0 x(6-x)=0 \Leftrightarrow x=0 \ eller \ x=6</math>

Hvis x=0, er <math>y=2x+3=2\cdot 0+3=3</math> eller hvis x=6, er <math>y=2x+3=2\cdot 6+3=15</math>.


2)

b)

Setter inn x=1 og y=5 i den øverste likningen i likningssettet og løser for a:

<math>a=2y-x^2+2x=2\cdot 5-1^2+2\cdot 1=10-1+2=11</math>. Altså må a være lik 11 for at x=1 og y=5 skal være en løsning til likningen.

c)

<math>2y-x^2+2x=a \Rightarrow y= 0,5x^2-x+ \frac a2 \\ y-2x=3 \Rightarrow y=2x+3 \\ \text{Setter funksjonene lik hverandre} \\ 0,5x^2-x+ \frac a2 = 2x+3 \\ 0,5x^2-3x+( \frac a2-3) =0 </math>

Dersom man får null under rottegnet i abc formelen har man en løsning. Dersom man får et negativt tall under rottegnet har man ingen løsning. To løsninger får man når uttrykket under rottegnet er positivt.

<math>b^2-4ac =0 \\ 9- 4 \cdot 0,5( \frac a2 - 3) =0 \\ 9-a + 6= 0 \\ a=15</math>

Man observerer at når a er større enn 15 er uttrykket negativt og likningsettet har ingen løsning.

Når a = 15 har det en løsning.

Når a er mindre enn 15 har settet to løsninger.

Alternativ II

a)

Vi deler opp arealet i to. Huset består av et kvadrat med areal <math>a \cdot a =a^2</math>

og et rektangel med areal <math>3a(10-a) = 30a-3a^2</math>

Det totale arealet blir da: <math>a^2 +(30a-3a^2) = 30a-2a^2 </math>


<math>a=5 \Rightarrow 30 \cdot 5 - 2 \cdot 5^2 = 100</math> kvadratmeter

b)

<math>F(a) = 30a- 2a^2 \\ F(a) = 112 \\ -2a^2+30a -112 = 0 \\a=7 \vee a=8</math>

c)

<math>F(a) = 30a- 2a^2 \\ F'(a) = 30-4a \\F'(a) = 0 \\ 30-4a=0 \\ a=7,5 \\ F(7,5)= 112,5</math>

Når a = 7,5m er huset 112,5 kvadratmeter

d)

<math>-2a^2+30a =72 \\ a=3 \vee a=12</math>

Huset er større enn 72 kvadrat meter når a er større enn 3m og mindre enn 10m