Forskjell mellom versjoner av «Vektorprodukt»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 38: Linje 38:
  
 
Her tolker vi <math>i,j,k</math> som enhetsvektorer langs x-,y- og z-aksen, og da ser vi at dette er i overensstemmelse med den første definisjonen.
 
Her tolker vi <math>i,j,k</math> som enhetsvektorer langs x-,y- og z-aksen, og da ser vi at dette er i overensstemmelse med den første definisjonen.
 +
==Eksempel==
  
 +
$[1,2,3] x [2,2,0] =$
 
[[Bilde:vektor014.png]]
 
[[Bilde:vektor014.png]]
 +
 
Merk at kryssproduktet ikke er kommutativt. Bruker vi definisjonen ser vi at
 
Merk at kryssproduktet ikke er kommutativt. Bruker vi definisjonen ser vi at
  

Revisjonen fra 9. nov. 2016 kl. 11:11

Vektorproduktet er en operasjon mellom to 3-dimensjonale vektorer som har nyttige anvendelser i blant annet areal- og volumberegninger og når vi skal finne normalvektorer til flater og plan i rommet. Merk at vektorproduktet slik det er definert ikke gir mening for annet enn 3- og 7-dimensjonale vektorer, der vi kun har fokus på det 3-dimensjonale tilfellet.

Determinanter

$\begin{vmatrix}a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1}\cdot a_{2,2} - a_{2,1} \cdot a_{1,2} \quad \quad $

Vektor004.png

Når man multipliserer diagonalt nedover mot høyre blir fortegnet positivt. Multiplikasjon diagonalt nedover mot venstre gir negativt fortegn.

$ \begin{vmatrix}1 & 4 & -2 \\5 & 3 & 6 \\2 & 0 & -1 \end{vmatrix}$ = -3 - 0 + 48 +20 + 0 + 12 = 77

Vi kom fram til dette på følgende måte: Vi utvider determinaten med to kolonner, slik at kolonne en og to repeteres etter kolonne tre.

Vektor011.png

$( 1 \cdot 3 \cdot (-1) - 1 \cdot 6 \cdot 0) + (4 \cdot 6 \cdot 2 - 4 \cdot 5 \cdot(-1)) + ((-2) \cdot 5 \cdot 0 - (-2) \cdot 3 \cdot 2)= -3 -0+48+20+0+12=77 $

Definisjon av vektorprodukt (kryssprodukt)

Vi bruker notasjonen <math>\times</math> for vektorprodukt. Lar vi <math>\vec{v_1}=(x_1,y_1,z_1)</math> og <math>\vec{v_2}=(x_2,y_2,z_2)</math> er


<math>\vec{v_1}\times \vec{v_2}=\left ( y_1z_2-y_2z_1), -(x_1z_2-x_2z_1), (x_1y_2-x_2y_1 \right )</math>


Definisjonen kan også skrives som en determinant som gjør den lettere å huske,


<math> \vec{v_1}\times\vec{v_2} = \left| \begin{array}{ccc}i & j & k \\x_1 & y_1 & z_1 \\x_2 & y_2 & z_2 \end{array} \right |</math>

Utvikler vi i første rad ser vi at determinanten blir


<math>\vec{v_1}\times\vec{v_2}= (y_1z_2-y_2z_1), i-(x_1z_2-x_2z_1)j, (x_1y_2-x_2y_1)k</math>.


Her tolker vi <math>i,j,k</math> som enhetsvektorer langs x-,y- og z-aksen, og da ser vi at dette er i overensstemmelse med den første definisjonen.

Eksempel

$[1,2,3] x [2,2,0] =$ Vektor014.png

Merk at kryssproduktet ikke er kommutativt. Bruker vi definisjonen ser vi at


<math>\vec{v_2}\times \vec{v_1}=-\vec{v_1}\times \vec{v_2}</math>

Geometrisk tolkning

Geometrisk bilde av vektorproduktet

Vektorproduktet <math>\vec{v_1}\times \vec{v_2}</math> er en ny vektor, si <math>\vec{v_3}</math>, som står normalt (vinkelrett) på både <math>\vec{v_1}</math> og <math>\vec{v_2}</math> og har lengde <math>|\vec{v_1}||\vec{v_2}|\sin(\theta)</math> der <math>\theta</math> er den minste vinkelen mellom vektorene. Retningen til <math>\vec{v_3}</math> følger høyrehåndsregelen, dvs. at dersom vi tilpasser et slags koordinatsystem slik at <math>\vec{v_1}</math> følger x-aksen i positiv retning og <math>\vec{v_2}</math> følger y-aksen i positiv retning, vil <math>\vec{v_3} </math> peke i positiv retning langs z-aksen.

Absoluttverdien av vektorproduktet

Absoluttverdien


<math>|\vec{v_1}\times \vec{v_2}|</math>


er arealet til parallellogrammet utspent av vektorene. Bruker vi definisjonen kan vi vise at


<math>|\vec{v_1}\times \vec{v_2}|=|\vec{v_1}||\vec{v_2}|\sin(\theta)</math>


der <math>\theta</math> er (den minste) vinkelen mellom vektorene. Da ser vi geometrisk at dette er likt arealet av parallellogrammet. For spesialtilfellet <math>\theta=\frac{\pi}{2}</math> vil vektorene utspenne et rektangel, og da ser vi enkelt at arealtolkningen stemmer siden <math>\sin(\frac{\pi}{2})=1</math>.

Eksempler

Beregning av vektorprodukt

Gitt vektorene <math>\vec{p}=(1,4,2)</math> og <math>\vec{q}=(9,7,1)</math> beregner vi vektorproduktet som følger:


<math> \vec{p}\times\vec{q}=(1,4,2)\times (9,7,1)=(4\cdot 1-7\cdot 2, -(1\cdot 1-9\cdot 2),1\cdot 7-9\cdot 4)=(-10,17,-29)</math>

Høyrehåndsregelen

Vi har vektoren <math>\vec{ v_1}</math> og vektoren <math> \vec{v_2}</math>. Vektorproduktet av de to vektorene vil være en vektor <math>\vec{v_3}</math> som står vinkelrett på planet som inneholder vektoren <math>\vec{v_1}</math> og vektoren <math>\vec{v_2}</math>.

Dersom du bruker høyre hånd og holder pekefingren parallell med <math>\vec{v_1}</math>, bøy langfingren slik at den er parallell med <math>\vec{v_2}</math> og la tommelfingren stå rett ut fra hånden. Tommelen peker nå i samme retning som <math>\vec{v_3}</math>. Regelen kalles høyrehåndsregelen.

Haand.gif

Regneregler

Vektorproduktet skrives <math> \vec{v_1}\times \vec{v_2}</math> og kalles derfor ofte for kryssproduktet. Operasjoner er ikke kommutativ eller assosiativ. Følgende regneregler gjelder:


<math>\vec{v_1}\times \vec{v_1} = -( \vec{v_2} \times \vec{v_1}) \\ \\ (\vec{v_1} + \vec{v_2}) \times \vec{v_3} = (\vec{v_1} \times \vec{v_3}) + (\vec{v_2} \times \vec{v_3})\\ \\

(k\vec{v_1}) \times \vec{v_2} = \vec{v_1} \times (k\vec{v_2})= k(\vec{v_1} \times \vec{v_2})</math>

Når man tar skalarproduktet av to vektorer blir resultatet en skalar, eller et tall. Når man tar vektorproduktet blir resultatet en ny vektor. Lengden av denne vektoren er gitt ved:

<math>|\vec{v_1} \times \vec{v_2}| = |\vec{v_1}| \cdot |\vec{v_2}|\cdot \sin \phi, \quad \phi \in [0^{\circ},180^{\circ}]</math>.

Bruksområder

Vektorproduktet brukes til å beskrive fenomener i fysikken og det kan også brukes til å regne ut arealer og volumer, samt til å bestemme et plans normalvektor. Eksempelvis har vi at:

Arealet at parallellogram

utspent av vektorene <math>\vec{v_1}</math> og <math>\vec{v_2}</math> er gitt ved <math>A = |\vec{v_1} \times \vec{v_2}| </math>

Vektor013.png Vektor012.png

Arealet av en trekant

utspent av vektorene <math>\vec{v_1}</math> og <math>\vec{v_2}</math> er gitt ved <math>A = \frac 12\cdot|\vec{v_1} \times \vec{v_2}| </math>

Vektor005.png



Volumet av en trekantet pyramide

bestemt av vektorene <math>\vec{v_1}</math>, <math>\vec{v_2}</math> og <math>\vec{v_3}</math> er gitt ved <math>V= \frac 16 \cdot|(\vec{v_1}\times \vec{v_2})\cdot \vec{v_3}|</math>

Vektor007.png

Volumet av en firkantet pyramide

bestemt av vektorene <math>\vec{v_1}</math>, <math>\vec{v_2}</math> og <math>\vec{v_3}</math> er gitt ved <math>V= \frac 13 \cdot |(\vec{v_1} \times \vec{ v_2})\cdot \vec{v_3}|</math>

Vektor009.png Vektor010.png

Volumet av et parallellepiped

bestemt av vektorene <math>\vec{v_1}</math>, <math>\vec{v_2}</math> og <math>\vec{v_3}</math> er gitt ved <math>V = |(\vec{v_1}\times \vec {v_2})\cdot \vec{v_3}|</math>