Forskjell mellom versjoner av «S2 eksempeloppgave 2015 vår LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 116: Linje 116:
  
 
==Oppgave 7==
 
==Oppgave 7==
 +
 +
Overskudd er inntekter minus kostnader.
 +
 +
$O(x)=I(x)-K(x)$
 +
 +
Overskuddet er størst når $O'(x)=0$    (Toppunktet på grafen til $O(x)$)
 +
 +
Vi deriverer og får:
 +
$ O'(x)=I' (x)-K' (x) $
 +
 +
$O' (x)=0 \\
 +
\Updownarrow \\
 +
I' (x)-K' (x)=0 \\
 +
I' (x)=K'(x) $
 +
 +
Når grensekostnaden er lik grenseinntekta er overskuddet størst.
  
 
==Oppgave 8==
 
==Oppgave 8==

Revisjonen fra 23. apr. 2015 kl. 12:37

DEL 1 (3 timer)

Oppgave 1

a)

$f(x)=3x^3-2x+5 \\ f'(x)=3\cdot 3x^{2}-2=9x^{2}-2$

b)

$g(x)=xe^{2x} \\ g'(x)=1⋅e^{2x}+x⋅2e^{2x}=(1+2x) e^{2x}$

Oppgave 2

Bestem $h'(2)$ når $h(x)=\frac{e^x}{x-1}$

$h'(x)=\frac{e^x⋅(x-1)-e^x⋅1}{(x-1)^2}=\frac{xe^x-e^x-e^x}{(x-1)^2} =\frac{xe^x-2e^x}{(x-1)^2} =\frac{(x-2) e^x}{(x-1)^2} \\ h'(2)=\frac{(2-2) e^2}{(2-1)^2} =\frac{0⋅e^2}{1}=0 $

Oppgave 3

$P(x)=2x^3-6x^2-8x+24$

a)

$P(3)=2⋅3^3-6⋅3^2-8⋅3+24\\ =2⋅27-6⋅9-24+24\\ =54-54-24+24=0 $

b)

Vi har vist at $P(x)=0$ for $x=3$. Då seier nullpunktsetninga at polynomdivisjonen $P(x):(x-3)$ går opp.

$(2x^3-6x^2-8x+24):(x-3)=2x^2-8$

Faktoriserer $2x^2-8$:

$2x^2-8=2(x^2-4)=2(x-2)(x+2)$

$P(x)=(2x^2-8)(x-3)=2(x-2)(x+2)(x-3)$

c)

$\frac{2x^3-6x^2-8x+24}{2x^2-8}=\frac{2(x-2)(x+2)(x-3)}{2(x-2)(x+2)} =(x-3)$

Oppgave 4

a)

(Sett inn tabell)

Formel for $S_{n}$:

$S_{n}=n^3$

b)

$S_n$ er summen av dei $n$ første ledda

$S_n=a_1+a_2+...+a_{n-1}+a_n$

$S_{n-1}$ er summen av dei $(n-1)$ første ledda:

$S_{n-1}=a_1+a_2+...+a_{n-1}$

Vi får at: $S_n=S_{n-1}+a_n \\ a_n=S_n-S_{n-1}$

$a_n=S_n-S_{n-1} \\ a_n=n^3-(n-1)^3 \\ =n^3-(n-1) (n-1)^2 \\ =n^3-(n-1)(n^2-2n+1) \\ =n^3-n^3+2n^2-n+n^2-2n+1\\ =3n^2-3n+1$

Oppgave 5

$f(x)=x^3-4x^2+4x , \space x∈〈-1,4〉$

a)

Nullpunkt:

$f(x)=0 \\ x^3-4x^2+4x=0 \\ x(x^2-4x+4)=0 \\ x=0 \vee x^2-4x+4=0 \\ x=0 \vee (x-2)^2=0 \\ x=0 \vee x=2 $

Nullpunktene er $x=0$ og $x=2$.

Topp-/bunnpunkt:

$f'(x)=3x^2-8x+4$

$f'(x)=0 \\ 3x^2-8x+4=0 \\ x=\frac{-(-8)±\sqrt{(-8)^2-4⋅3⋅4}}{2⋅3}=\frac{8±\sqrt{64-48}}{6}=\frac{8±\sqrt{16}}{6}=\frac{8±4}{6} \\ x=2 \vee x=\frac{2}{3} $

$3x^2-8x+4=3(x-2)(x-\frac{2}{3}) $

(Sett inn fortegnslinje)

$f(2)=0 \\ f(\frac{2}{3})=\frac{32}{27} $

Toppunktet er $(\frac{2}{3},\frac{32}{27})$ . Bunnpunktet er $(2,0)$.

b)

Oppgave 6

$f(0)=300, \space f'(10)=0 $ og $f' '(10)=-10 $

Ved starten av utbruddet, når $t=0$ er spruter det ut 300 tonn lava per time.

Etter 10 timer er veksten lik 0. Fordi den andrederiverte er negativ for $t=10$, vet vi at dette må være et toppunkt. Etter 10 timer er mengden lava per time størst.

Mengden lava per time øker fram til det har gått 10 timer, for deretter å avta.

Oppgave 7

Overskudd er inntekter minus kostnader.

$O(x)=I(x)-K(x)$

Overskuddet er størst når $O'(x)=0$ (Toppunktet på grafen til $O(x)$)

Vi deriverer og får: $ O'(x)=I' (x)-K' (x) $

$O' (x)=0 \\ \Updownarrow \\ I' (x)-K' (x)=0 \\ I' (x)=K'(x) $

Når grensekostnaden er lik grenseinntekta er overskuddet størst.

Oppgave 8

Oppgave 9

Oppgave 10

Oppgave 11

Del 2 (2 timer)

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6