Forskjell mellom versjoner av «S1 2015 vår LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 189: Linje 189:
 
Vi antarat de er fornøyde uavhengig av hverandre, og at populasjonene er mye større enn utvalget. Bruker binomisk fordeling
 
Vi antarat de er fornøyde uavhengig av hverandre, og at populasjonene er mye større enn utvalget. Bruker binomisk fordeling
  
 +
 +
[[File:s1-v2015-21a.png]]
 
===b)===
 
===b)===
  
 +
[[File:s1-v2015-21b.png]]
 
===c)===
 
===c)===
 +
 
==Oppgave 2==
 
==Oppgave 2==
  

Revisjonen fra 25. des. 2015 kl. 07:15

Diskusjon av denne oppgaven på matteprat

Vurderingsskjema

Sensorveiledning

Løsning laget av matteprat-bruker LektorH


DEL EN

Oppgave 1

a)

$2x^2-6x+4=0 \\ x= \frac{6 \pm \sqrt{36 -4 \cdot 2 \cdot 4}}{2 \cdot 2} \\ x= \frac{6 \pm 2}{4} \\ x=1 \vee x= 2$

b)

$2lgx - lg2 = lg(4-x) \\ lg{ \frac{x^2}{2}} = lg(4-x) \\ 10^{ lg{ \frac{x^2}{2}}} = 10^{lg(4-x)} \\ \frac{x^2}{2} = 4-x \\ x^2+2x-8=0 \\ x= \frac{-2 \pm \sqrt{4-4 \cdot 1 \cdot (-8)}}{2} \\ x= \frac{-2 \pm 6}{2} \\ x= -4 \vee x =2$

Likningen inneholder lgx, så alle negative løsninger må forkastes.

Dvs. x = 2. Ved å sette prøve på svaret ser man at begge sider gir lg2.

Oppgave 2

a)

$PC + CB = 30 = x + y$ Det er like langt fra B til P, om C og om A, derav første likning.

$(10+x)^2+400 = y^2$ er pytagoras anvendt på trekanten ABC.

b)

<math> \left[ \begin{align*} x+y=30\\ (10+x)^2+400 = y^2 \end{align*}\right] </math>

<math> \left[ \begin{align*} x=30 - y \\ (10+30-y)^2+400 = y^2 \end{align*}\right] </math>

<math> \left[ \begin{align*} x=30 - y \\ (1600 -80y +y^2 +400 = y^2 \end{align*}\right] </math>

Den nederste likningen gir: 80y = 2000, dvs. y = 25

$x = 5 \vee y = 25$

Oppgave 3

a)

$(a+1)^2 - 2(a-1)(a+1) + (a-1)^2 = \\ a^2+2a+1 -2(a^2-1) +a^2 -2a+1=\\ a^2 +2a+1-2a^2+2+a^2-2a+1=\\ 4$

b)

$\frac{(2a^2)^{-1}(3b)^2}{(3a^2b^{-1})^2} \\ \frac{9b^2b^2}{18a^6}= \\ \frac{b^4}{2a^6}$

Oppgave 4

a)

$f(x)= x^3 -6x^2+9x-4 \quad D_f = \R \\ f´(x) = 3x^2-12x+9$

b)

Setter den deriverte lik null for å finne ekstremalpunkter:

$f´(x) = 0\\ 3x^2-12x+9 =0 \\x = \frac{4 \pm \sqrt{16-12}}{2} \\ x=1 \vee x= 3 $

Faktorisert:

$f´(x)= 3(x-1)(x-3)$

S1-v2015-4b.png

$f´(2) = $ negativ verdi, så:

Maksimumspunkt: $f(1)= 1-6+9-4 = 0$. dvs. (1,0).

Minimumspunkt: $f(3)= 27-54+27-4 =-4$. dvs. (3, -4).

c)

Likning til tangenten til grafen i (0, f(0)):

f(0) = -4

f´(0) = 9

$ y= ax+b \\ y= 9x+b \\ -4 = 9 \cdot 0 +b \\ b=-4 \\ y= 9x-4$

d)

Den deriverte til den andre tangenten må være 9.

$f´(x)=9 \\ x= 0 \vee x =4$

f(4)=0

Den andre tangenten med stigningstall 9 tangerer i punktet (4,0)

Oppgave 5

a)

S1-v2015-3a.png

b)

Sjekker hjørnene i trekanten (-1, 0), -1, 6) og (2, 3)

$3x+2y \\ 3 \cdot (-1) +0 = -3 \\ 3 \cdot (-1) + 2 \cdot 6= 9 \\ 3 \cdot 2 + 2 \cdot 3 = 12$

Uttrykket blir størst i punktet (2, 3)

Oppgave 6

a)

$K(x)= 0,25x^2+100x + 5000 \quad x \in [0, 400]$

Inntekt er : $I(x) = 200x$

Overskudd = Inntekt - Kostnad:

$O(x)= I(x)-K(x) \\ O(x)= 200x- 0,25x^2-100x-5000 \\ O(x)= -0,25x^2 + 100x - 5000$

b)

$O´(x) = -0,5x+100$

Setter den deriverte lik null og får løsningen x = 200.

200 solgte enheter gir størst overskudd.

Oppgave 7

a)

Sannsynlighet for to røde kuler:

$ P(2 røde)= \frac{ \binom{3}{2} \binom{4}{1}}{ \binom{7}{3}} = \frac{\frac{3!}{2! \cdot 1!} \cdot \frac{4!}{1! \cdot 3!}}{ \frac{7!}{3! \cdot 4!}} = \frac{3 \cdot 4}{35}= \frac{12}{35}$

b)

Flere røde enn blå:

p( flere røde enn blå) = P(2 røde) + P (3 røde)= $\frac{12}{35} + \frac{\binom{4}{0} \binom{3}{3}}{ \binom{7}{3}} = \frac{12}{35} + \frac{1}{35} = \frac{13}{35}$

c)

Med tilbakelegging har vi en binomisk situasjon der p= $\frac 37$, n = 3 og x = 2 :

P(2 røde) = $ \binom{3}{2} \cdot ( \frac 37)^2 \cdot ( \frac 47) = \frac{108}{343} $

Det er ca en tredjedels sjanse for at to av kulene er røde.

Oppgave 8

a)

Graf A kommer fra en brøkfunksjon, altså h eller g. Begge har vertikal asymptote for x = 1, så det hjelper oss ikke. Dersom vi deler alle ledd i teller og nevner på x vil vi lett se den horisontale asymptoten, når vi lar x gå mot uendelig. h har vertikalasymptote for y = 2 og g har for y =1. Det er altså h som er fremstillt i graf A.

b)

Graf B har en form som tilsier at det kan være en tredjegradsfunksjon. Da har vi kandidatene f og k. Både f og k skjærer y-aksen i 2, så det hjelper oss ikke. Vi sjekker den deriverte for x=0.

$f´(x)=3x^2+2x-2,\quad f´(0) = -2 \\ k´(x)=6x^2-6. \quad k´(0)= -6$

Begge de deriverte er negativie, så det er vannskelig å konkludere. Sjekker ekstremalpunkt for $x= \pm 1$:

$f´(1) =3 \\ k´(1)= 0 \wedge k´(-1)=0$

Vi ser at f ikke passer pga minimum i x=1, men k(x) er funksjonen til graf B.

Oppgave 9

$9^x-3^x-12=0 \\ (3^2)^x -3^x-12 =0 \\ 3^{2x}-3^x-12 =0 \\(3^x)^2 -3^x-12=0 \\ u= 3^x \\ u^2-u-12 =0 \\ u = \frac{1 \pm{\sqrt{1+48}}}{2} \\ u = -3 \vee u = 4 \\ $

$3^x$ kan ikke være negativ, så kun 4 er en løsning for u.

$3^x=4 \\ 3^x =2^2 \\ x \lg3 = 2 \lg2 \\ x= \frac{2 \lg2}{\lg3}$

DEL TO

Oppgave 1

a)

Vi antarat de er fornøyde uavhengig av hverandre, og at populasjonene er mye større enn utvalget. Bruker binomisk fordeling


S1-v2015-21a.png

b)

S1-v2015-21b.png

c)

Oppgave 2

a)

S1-v2015-2abc.png

En god modell er $K(x)=0,13x^2+72,73x+20315$

Kostnadene ved å produsere 220 enheter er 48.813 kroner.

b)

Fra figur i a:

For å få overskudd må bedriften produsere og selge 127 eneheter.

c)

Fra figur i a:

Størst overskudd ved 660 enheter, da er overskuddet 38.213,50 kr.

Oppgave 3

a)

S1-v2015-3ab.png

Metallet er 500 grader celsius når det blir tatt ut av ovnen, fra figur. Har også at $T(0)= 470+30 = 500$

b)

Smeden har ca 26,5 minutter til å bearbeide metallstykket. Det er varmt i rommet, 30 grader celsius ( konstanledd i funksjonsuttrykk).

c)

Oppgave 4

a)

Areal av eskens bunn: $A= (6-4x)(6-2x) = \\36-12x-24x+8x^2= \\ 8x^2-36x+36 $

Multipliserer så med høyden av esken, x, og får volumet:

$V(x) = A(x) \cdot x= 8x^3-36x^2+36x \quad x \in <0, 1,5>$

b)

c)