Romfigurer

Fra Matematikk.net
Hopp til:navigasjon, søk

Kule

Vektornotasjon er nyttig for å beskrive romfigurer. Lar vi en generell romlig posisjonsvektor være <tex>\vec{r}=(x,y,z)</tex>, vil en kuleflate ha ligningen


<tex>|\vec{r}|=r</tex>


Alle punkter x,y,z som tilfredsstiller ligningen vil ligge på overflaten av ei kule med sentrum i origo og radius r.


Vi kan flytte senteret ved å translatere langs aksene, dvs. at vi subtraherer en konstant vektor <tex>\vec{r_0}</tex> fra posisjonen:


<tex>|\vec{r}-\vec{r_0}|=r</tex>


Alle punkter x,y,z som tilfredsstiller denne ligninga vil ligge på en kuleflate med senter i <tex>\vec{r_0}</tex> og radius r.


Dette gir oss en helt generell beskrivelse av en kule i rommet.


Volum

Overflateareal

Sylinder

En sylinder har tverrsnitt som en sirkulær skive og lengde avgrenset av to plan som står normalt på sylinderens akse.


F.eks. vil en sylinder som er orientert i retning z-aksen (aksen er parallell med z-aksen) være beskrevet som en (lukket) skive i xy-planet avgrenset av plan parallelle med xy-planet. Ligningen til enhetsskiven i xy-planet,


<tex>x^2+y^2\leq 1</tex>,


vil dermed beskrive en sylinder når vi innfører en ny dimensjon (z-aksen); Sylinderflaten avgrenset av planene <tex>z=a</tex> og <tex>z=b</tex> med <tex>a<b</tex> vil bestå av alle punkter <tex>(x,y,z)</tex> slik at <tex>x^2+y^2\leq 1</tex> og <tex>z\in [a,b]</tex>


Volum

Overflateareal

Parallellepiped

En parallellepiped er en rektangulær boks som er klemt sammen eller deformert i en viss forstand; Vi tenker oss at en rektangulær boks er utspent av tre ortogonale vektorer. Et parallellepiped vil, til forskjell, være utspent av tre vektorer som ikke nødvendigvis er ortogonale.


Volum

Overflateareal