Forskjell mellom versjoner av «R1 2013 høst LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 172: Linje 172:
 
===b)===
 
===b)===
  
Vi har siirkellikningen: $x^2 + y^2 = r^2$
+
Vi har sirkellikningen: $x^2 + y^2 = r^2$
  
 
Dersom vinkel APB er nitti  grader, må vektorene PA og PB stå normalt på hverandre. Da er skalarproduktet av vektorene null.
 
Dersom vinkel APB er nitti  grader, må vektorene PA og PB stå normalt på hverandre. Da er skalarproduktet av vektorene null.

Revisjonen fra 7. feb. 2014 kl. 09:13

Oppgaven som pdf

Matteprat: Diskusjon omkring denne oppgaven


DEL EN

Oppgave 1:

a)

$f(x) = 2e^{3x} \\ f´(x) = 2(3x)´e^{3x} = 6e^{3x}$

b)

$g(x) = 2x \cdot \ln(3x) \\ g´(x) = 2 ln(3x) + 2x \cdot \frac{1}{3x} \cdot (3x)´ \\ g´(x) = 2( \ln(3x)+1)$

c)

$h(x)= \frac {2x-1}{x+1} \\ h´(x) = \frac{2(x+1) - (2x-1)}{(x+1)^2} \\ h´(x) = \frac {3}{(x+1)^2} $

Oppgave 2:

a)

$P(x)= x^3-6x^2+11x-6 \\ P(1)= 1^3 - 6 \cdot 1^2 + 11 \cdot 1 -6 =0$

b)

$ \quad( x^3-6x^2+11x-6) : (x-1) =x^2 - 5x + 6\\ -(x^3 -x^2) \\ \quad \quad -5x^2 \\ \quad \quad -(-5x^2 +5x) \\ \quad \quad \quad \quad \quad \quad 6x-6$


$x^2-5x+6=0 \\ x= \frac{5 \pm \sqrt{25-24}}{2} \\ x= 2 \vee x=3$

$P(x)=x^3-6x^2+11x-6 = (x-1)(x-2)(x-3)$

$P(x) \geq 0$

2-r1-h2013.png


$x \in [1,2] \cup [3, \rightarrow>$

Oppgave 3:

  • Avsett linjestykket AB lik 10 cm
  • Konstruer en halvsirkel med diameter 10 cm, med sentrum midt mellom A og B.
  • Konstruere en linje parallell med AB, med avstand 4 cm. Denne linjen skjærer halvsirkelen i to punkter.

3-r1-h2013.png

Oppgave 4:

$2^{3x-1} = 2^2+2^2+2^2+2^2 \\ 2^{3x+1} = 4 \cdot 2^2 \\ 2^{3x-1} = 2^4 \\3x-1 =4 \\ x = \frac 53$

Oppgave 5:

a)

5a-r1-h2013.png

b)

$\vec u \cdot \vec v = [7,7] \cdot [5, -2] = 5\cdot 7 + (-2) \cdot 7 = 35-14 =21$

Vektorene u og v står ikke vinkelrett på hverandre.

Oppgave 6:

a)

$f(x)= - \frac 13 x^3+2x^2, \quad D_f \in \R \\ f´(x)= -x^2 +4x \\ f´´(x) = -2x+4$

b)

Ekstremalpunkter:

$f ´(x)=0 \\ -x^2+4x=0 \\ x(-x+4)=0 \\ x=0 \vee x= 4 \\ f(0) = 0 \wedge f(4) = \frac{32}{3} \\ (0,0) \wedge ( 4, \frac{32}{3})$

Vendepunkt:

$f´´(x)=0 \\ -2x+4 =0 \\ x= 2 \\ f(2) = - \frac {8}{3} + \frac{24}{3} = \frac {16}{3} \\ (2, \frac{16}{3})$

Fortegnslinjer:

R1.gti-h2013.png

c)

6c-r1-h2013.png

Oppgave 7:

a)

$S_1 : x^2+y^2=25$ Sirkelen har sentrum i origo og radius 5


$S_2 : (x-a)^2+y^2=9$ Setter a = 6. Sirkelen har sentrum i (6, 0) og radius 3


7a-r1-h2013.png

b)

$S_2$ kan tangere $S_1$ både utvendig og innvendig. Det er bare forskyvning i x rettning, og det finnes fire muligheter.

$a = \pm r_2 \pm r_1 \\ a = \pm 5 \pm 3 \\ a=-8 \vee a= -2 \vee a= 2 \vee a= 8$

DEL TO

Oppgave 1

a)

Grafen tangerer x- aksen for x=2, derfor $(x-2)^2$

$f(x) = 2(x-2)^2 = 2(x^2-4x+4 )= 2x^2-8x+8$

Man observer at konstantleddet 8 stemmer med grafen skjæring med y aksen. Uttrykket for f(x) er derfor riktig.

b)

$(x-3)^2(x+1) = x^3-5x^2-6x+9$

Man observerer at g skjærer y-aksen i 9, dvs. k = 1.

c)

$ (x-2)^2 (x+2) = \\(x^2-4x+4)(x^2+4x+4)$

Man observerer at konstantleddet i uttrykket over blir 16. h skjærer y-aksen i 8, man må derfor multiplisere med en halv. h(x) blir da:

$h(x) = \frac 12 (x-2)^2(x+2)^2$

Oppgave 2

a)

Asymptoter:

Horisontal: $ lim_{x \to \pm \infty} f(x)= lim_{x \to \pm \infty} \frac {2x-1}{x+1} = lim_{x \to \pm \infty} \frac {\frac {2x}{x}- \frac1x}{\frac xx+ \frac 1x} =2 $

Vertikal: x + 1 = 0, x = -1

2a2-r1-h2013.png

b)

$f(x)=g(x) \\ \frac{2x-1}{x+1} = x-1 \\ 2x-1 = x^2-1 \\ x^2-2x=0 \\x=0 \vee x=2$

Oppgave 3

a)

Areal av rektangel;

$A = b \cdot h \\ A= (12-x) \cdot f(x) \\ A= (12-x) \cdot (x^2+21) \\ A = 12x^2-3x^3+252-21x \\ A(x)= -x^3+12x^2-21x + 252$

b)

$A(x)= -x^3+12x^2-21x + 252 \\ A´(x) = -3x^2+24x-21 \\ x= \frac {-24 \pm \sqrt{24^2 -4 \cdot (-3) \cdot (-21)}}{-6} \\x=1 \vee x=7 $

3b-1t-h2013.png

c)

3c-r1-h2013.png

Oppgave 4

a)

$A = (-r, 0) \\ B = (r,0)$

$\vec{PA} = [-r-x, -y] \\ \vec {PB} = [r-x, -y]$

b)

Vi har sirkellikningen: $x^2 + y^2 = r^2$

Dersom vinkel APB er nitti grader, må vektorene PA og PB stå normalt på hverandre. Da er skalarproduktet av vektorene null.

$[ -r-x, -y] \cdot [r-x, -y] = -r^2 +rx -rx +x^2 +y^2 \\ x^2 + y^2-r^2 =0$

Som vi viste på forhånd (sentralvinkel / periferivinkel) er vinkelen 90 grader.

Oppgave 5

a)

Sannsynlighet for matematikk og fysikk:

$P(M \cap F) = P(M) + P(F) - P(M \cup F) = 0,64 + 0,32 - 0,70 = 0,26$

Sannsynlighet for matematikk og ikke fysikk:

$P(M\cap \overline F) = P(M) - P(M \cap F) = 0,64 - 0,26 = 0,38$

b)

Sannsynlighet for fysikk, gitt matematikk:

$P(F | M) = \frac{P(F \cap M)}{P(M)} = \frac{0,26}{0,64} =0,41 $


Nei, hendelsenne er avhengige fordi $P(F) \neq P(F|M)$.

c)

Sannsynligheten for matematikk, gitt fysikk;

$P(M | F ) = \frac{P(F | M ) \cdot P(M)}{P(F)} = \frac {0,41 \cdot 0,64}{0,32} = 0,82$

Oppgave 6

a)

6a-r1-h2014.png

$ \vec{AB} = [6,4] \\ \vec{AD} = [1,5] \\ | \vec{AB}| = \sqrt{36+16} = \sqrt {52} \\ |\vec{AD}| = \sqrt{25+1} = \sqrt{26} \\ \vec {AB} \cdot \vec{AD} = | \vec{AB} | \cdot | \vec{AD} | \cdot \cos (BAD) \\ \cos(BAD) = \frac { \vec {AB} \cdot \vec{AD}}{| \vec{AB} | \cdot | \vec{AD}| } \\ \cos (BAD) = \frac{[6,4] \cdot [1,5]}{\sqrt {52} \cdot \sqrt{26}} \\ \cos (BAD) = \frac{26}{ \sqrt{26 \cdot 26 \cdot 2}} \\ \cos(BAD)= \frac {\sqrt 2}{2}$

Vinkel (BAD) = $ \cos^{-1} (\frac{\sqrt 2}{2} ) =45^{\circ}$

Areal av trekanten;

$A = \frac 12 | \vec{AB} | \cdot | \vec{AD} | \sin(BAD) = \frac 12 \cdot \sqrt{26} \cdot \sqrt{26 \cdot 2} \cdot \frac{\sqrt{2} }{2} =13 $

b)

$\vec{DC} || \vec {AB} , \quad \quad D (x,y) \\ k \vec{DC} = \vec{AB} \\ k[x+2, y-2] = [6,4] \\ kx+2k=6 \wedge ky-2k = 4 \\ x = \frac{6-2k}{k} \wedge y = \frac{4+2k}{k}$


Skalarproduktet mellom AB og BC vektor er null.

$[6,4] \cdot [x-3, y-1] = 0 \\ 6x -18 + 4y -4 = 0 \\ 6x-4y - 22 =0 \\ 6 ( \frac{6-2k}{k}) + 4(\frac{4+2k}{k}) -22 =0 \\ \frac{52}{k} = 26 \\ k =2$

Setter inn i uttrykkene for x og y:

$ x = \frac{6-2k}{k} \wedge y = \frac{4+2k}{k} \\ x = \frac{6-2 \cdot 2}{2} \wedge y = \frac{4+2\cdot 2}{2 } \\ x= 1 \wedge y = 4 $

Dvs. C (1, 4)

c)

E ( s, 2s-2)

$x= -2+3t \wedge y = 2+2t \\ s = -2+3t \wedge 2s-2 = 2+2t \\ 2(-2+3t) - 2 =2+2t \\ -4+ 4t = 4 \\ t= 2 \\ x = -2+6 \wedge y = 2+4 \\ x=4 \wedge y= 6$

Dvs, s = 4

6c-r1-h2014.png


E (4, 6)

d)

Dersom E skal ligge på l og AE vektor være like lang som BE vektor, ser man fra figuren over at E må sammenfalle med D, altså må E ha koordinatene (-2, 2)

Ved regning:

$\vec{AE} = [3t+1, 2t+5] \\ \vec{BE} = [3t-5, 2t+1] \\ |\vec{AE}| = |\vec{AB}| \\ \sqrt{(3t+1)^2 + (2t+5)^2} = \sqrt{(3t-5)^2 +(2t-1)^2 } \\ t=0$

Innsatt i parameterfremstillingen for l gir det (-2, 2) som er sammenfallende med D.

Oppgave 7

$n^2 \cdot (\frac{x}{n})^{ln(x) - 2} = x^2 \quad x> 0 \wedge n>0 \\ (\frac{x}{n})^{ln(x) - 2} = (\frac{x}{n})^2 \\ ln(x) =4 \\ x= 10 000 $

Når x er lik n er brøken lik en og likningen stemmer. Derfor er x = n også en løsning av likningen. Dvs:

x = 10 000 eller x = n.