Forskjell mellom versjoner av «Induksjonsbevis»

Fra Matematikk.net
Hopp til:navigasjon, søk
m (Retter egen feilplassert kategorisering)
 
(47 mellomliggende revisjoner av 3 brukere er ikke vist)
Linje 1: Linje 1:
Bevis ved induksjon er delt i to trinn, induksjonsgrunnlaget og induksjonstrinnet.  
+
Bevis ved induksjon er delt i to trinn, induksjonsgrunnlaget og induksjonsstrinnet.  
 
<p></p>
 
<p></p>
 
    
 
    
 +
<div style="padding: 1em; border: 1px blue; background-color: #C9EFF8;">
  
La U(n) være et åpent utsagn som gjelder for alle <tex>\quad n \geq n_0</tex>  
+
La <math>U(n)</math> være et åpent utsagn som gjelder for alle <math>n \geq n_0</math>  
  
 
   <p></p>
 
   <p></p>
Linje 9: Linje 10:
 
Dersom  
 
Dersom  
 
<p></p>
 
<p></p>
1. induksjonsgrunnlaget<tex>\quad U(n_0)</tex> er sann  
+
1. induksjonsgrunnlaget <math>U(n_0)</math> er sann  
  
<p></p>  
+
<p></p>  
  
 
og  
 
og  
 
<p></p>
 
<p></p>
2. induksjonstrinnet <tex>\quad U(k) \Rightarrow U(k+1),\quad k\geq n_0 </tex> er sann,
+
 
 +
2. induksjonstrinnet <math>U(k) \Rightarrow U(k+1),\quad k\geq n_0 </math> er sann,
  
 
<p></p>  
 
<p></p>  
  
så er U(n) sann for alle  <tex>\quad n \geq n_0</tex> .  
+
så er <math>U(n)</math> sann for alle  <math>n \geq n_0.</math>
 +
<p></p>
 +
 
 +
</div>
 +
 
 +
 
 +
 
 +
Prinsippet for induksjonsbevis illustreres enklest via et konkret eksempel: La oss si at vi ønsker å bevise formelen
 +
 
 +
\[ \sum_{i=1}^{n}i=\frac{n(n+1)}{2}\, \qquad \forall n \in \mathbb{N} \]
 +
 
 +
 
 +
== Trinn 1 ==
 +
Det første vi gjør er å verifisere at formelen gjelder for spesialtilfellet <math>n=1</math>. Dette er trivielt siden <math>\sum_{i=1}^{1}i=1</math> og <math>\frac{1\cdot (1+1)}{2}=1</math>;
 +
høyresiden er lik venstresiden.
 +
 
 +
 
 +
== Trinn 2 (induksjonstrinnet)==
 +
I induksjonstrinnet antar vi at formelen gjelder for en bestemt verdi av n, si <math>n=k</math> og utleder deretter via kjente regneregler at formelen også gjelder for <math>n=k+1</math>.
 +
Dersom vi lykkes, vil dette indusere en dominoeffekt: Fra '''trinn 1''' vet vi at formelen gjelder for <math>n=1</math> og '''trinn 2''' sikrer at formelen gjelder for <math>n=2</math>
 +
(og på samme måte at formelen gjelder for <math>n=3</math> etc.).
 +
 
 +
 
 +
I det konkrete eksempelet vil induksjonstrinnet se slik ut:
 +
 
 +
Vi antar at formelen er riktig for <math>n=k</math>:
 +
 
 +
\[
 +
\sum_{i=1}^{k}i=\frac{k (k+1)}{2}
 +
\]
 +
 
 +
Vi undersøker så summen når <math>n=k+1</math> ved å bruke denne antagelsen:
 +
 
 +
\[
 +
\begin{aligned}
 +
\sum_{i=1}^{k+1}i  &= \sum_{i=1}^{k}i + (k+1) \\
 +
&= \frac{k(k+1)}{2} + (k+1) \\
 +
&= \frac{(k+1)(k+2)}{2}
 +
\end{aligned}
 +
\]
 +
 
 +
Her ser vi altså at dersom formelen er riktig for <math>n=k</math>, så vil formelen være riktig for <math>n=k+1</math>. Dette kompletterer induksjonsbeviset.
 +
 
 +
Denne "malen" for induksjonsbevis vil i prinsippet gjelde for alle problemer, dog vil det kunne oppstå ulike vanskeligheter for de spesifikke variasjonene, men disse er av "algebraisk" karakter.
 +
For å bli fortrolig med induksjon er man nødt til å regne gjennom en del eksempler.
 +
 
 +
 
 +
 
 +
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">
 +
 
 +
'''Eksempel 1:'''
 +
 
 +
<p></p>
 +
 
 +
La oss se litt nærmere på eksemplet over, denne gangen uten bruk av summetegn:
 +
 
 +
\[
 +
1 + 2 + 3 + \ldots + \ n = \frac{n (n+1)}{2}
 +
\]
 +
 
 +
Tallet n skal være et positivt helt tall. <p></p>
 +
 
 +
Først undersøker man induksjonsgrunnlaget: Når n = 1 blir høyre side lik venstre side.<p></p>
 +
 
 +
I induksjonstrinnet antar vi først at formelen er riktig for n = k:
 +
 
 +
\[
 +
1 + 2 + 3 + \ldots + k = \frac{k (k+1)}{2}
 +
\]
 +
 
 +
Deretter undersøker vi summen for n = k + 1, ved å bruke antagelsen:
 +
 
 +
\[
 +
\begin{aligned}
 +
1 + 2 + 3 + \ldots + k + (k+1) &= \frac{k (k+1)}{2} + (k+1) \\
 +
&=(k+1) ( \frac{k}{2} + 1) \\
 +
&= \frac{(k+1)(k + 2)}{2}
 +
\end{aligned}
 +
\]
 +
 
 +
Vi ser at den siste linjen er høyresiden i formelen når n = k + 1. Altså er beviset fullført.
 +
</div>
 +
 
 +
 
 +
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">
 +
 
 +
'''Eksempel 2:'''
 +
 
 
<p></p>
 
<p></p>
 +
Bevis formelen
 +
 +
\[
 +
1^2 + 2^2 + 3^2 +.....+ n^2 = \frac{n(n+1)(2n+1)}{6}  \qquad n \in \mathbb{N}
 +
\]
 +
 +
Man finner først om induksjonsgrunnlaget er sant. Når n = 1 er venstre side lik
 +
<math> 1^2 = 1,</math> og høyre side er  <math> \frac{1 \cdot 2 \cdot 3}{6} = 1.</math>
 +
Induksjonsgrunnlaget er dermed sant, begge sider er lik 1 for n=1.
 +
<p></p>
 +
 +
I induksjonstrinnet antar vi først at formelen er riktig for n = k:
 +
 +
\[
 +
1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6}
 +
\]
 +
 +
Så undersøker vi summen for n = k + 1 ved å bruke antagelsen:
 +
 +
\[
 +
\begin{aligned}
 +
1^2 + 2^2 + 3^2 +.....+ k^2 + (k+1)^2 &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \\
 +
&= (k+1) [ \frac{k(2k+1)}{6} + (k+1) ] \\
 +
&= (k+1) \frac{k[2k+1 + 6(k+1)]}{6} \\
 +
&= \frac{(k+1)[2k^2+7k+6]}{6} \\
 +
&= \frac{(k+1)[2(k+2)(k + \frac{3}{2})]}{6} \\
 +
&= \frac{(k+1)(k+2)(2k + 3)}{6} \\
 +
\end{aligned}
 +
\]
 +
 +
Den siste linjen er høyresiden i formelen når n = k + 1. 
 +
 +
Q.E.D.  (quod erat demonstrandum)
 +
</div>
 +
 +
 +
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">
 +
 +
'''Eksempel 3:'''
 +
 +
Bevis derivasjonsregelen $(x^n)' = nx^{n-1}.$
 +
 +
I induksjonsgrunnlaget viser vi først at formelen gjelder for n = 1:
 +
 +
: Høyre side: $n \cdot x^{n-1} = 1 \cdot x^0 =1$
  
 +
: Venstre side $(x^1)'= x' =1$
  
 +
Induksjonsgrunnlaget er sann:  Linjen y = x har stigningstall 1.
  
 +
I induksjonstrinnet antar vi som vanlig at formelen er riktig for n = k:
  
 +
\[
 +
(x^k)' = kx^{k-1}
 +
\]
  
Prinsippet for induksjonsbevis illustreres enklest via et konkret eksempel: La oss si at vi ønsker å bevise formelen <tex>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}\,\forall n \in \mathbb{N}</tex>.
+
Vi viser så at formelen holder for n = k + 1, ved å bruke antagelsen sammen med regelen for derivering av et produkt:
  
 +
\[
 +
\begin{aligned}
 +
(x^{k+1})' &= (x \cdot x^k)' \\
 +
&= x^k + x \cdot k \cdot x^{k-1} \\
 +
&= x^k + kx^k \\
 +
&= (1+k)x^k
 +
\end{aligned}
 +
\]
  
== Steg 1 ==
+
Q.E.D.
Det første vi gjør er å verifisere at formelen vi skal bevise gjelder for spesialtilfellet <tex>n=1</tex>. Dette er trivielt siden <tex>\sum_{i=1}^{1}i=1</tex> og <tex>\frac{1\cdot (1+1)}{2}=1</tex>; høyresiden er lik venstresiden.
 
  
 +
</div>
  
== Steg 2 (induksjonssteget)==
 
I induksjonssteget antar vi at formelen gjelder for en bestemt verdi av n, si <tex>n=k</tex>, og utleder deretter via kjente regneregler at formelen gjelder for <tex>n=k +1</tex>. Dersom vi lykkes vil dette indusere en dominoeffekt; fra '''steg 1''' vet vi at formelen gjelder for <tex>n=1</tex> og '''steg 2''' sikrer at formelen gjelder for <tex>n=2</tex> (og på samme måte at formelen gjelder for <tex>n=3</tex> etc.).
 
  
 +
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">
 +
'''Eksempel 4:'''
  
I det konkrete eksempelet vil induksjonssteget se slik ut:
+
Bevis at $n^3-4n+6$ er delelig på 3 når n er et ikke-negativt heltall.
  
 +
1. Induksjonsgrunnlag: n=0 gir $n^3-4n+6 = 6$, som er delelig på 3.
  
<tex>\sum_{i=1}^{k}i=\frac{k (k+1)}{2} \\  k+1+\sum_{i=1}^{k}i= k+1+\frac{k(k+1)}{2} \\ \sum_{i=1}^{k+1}i=\frac{(k+1)(k+2)}{2} </tex>
+
2. Induksjonstrinnet: Anta at $n^3-4n+6$ er delelig på 3 når n = k. Med n = k + 1 får vi
  
 +
\[
 +
\begin{aligned}
 +
(k+1)^3 -4(k+1) + 6 &= (k+1)(k^2 + 2k + 1)- (4k + 4) + 6 \\
 +
&= (k^3 + 2k^2 + k + k^2 + 2k + 1) - 4k + 2 \\
 +
&= (k^3 -4k + 6) + 3(k^2 + k - 1)
 +
\end{aligned}
 +
\]
  
Her ser vi altså at dersom formelen er riktig for <tex>n=k</tex> vil formelen være riktig for <tex>n=k+1</tex>, og dette kompletterer induksjonsbeviset.
+
Den første parantesen er delelig på 3, i følge antagelsen for n = k. Den andre inneholder faktoren 3.  Sammen gir dette at hele uttrykket er delelig på 3.  
  
 +
</div>
  
Denne "malen" for induksjonsbevis vil i prinsippet gjelde for alle problemer, dog vil det kunne oppstå ulike vanskeligheter for de spesifikke variasjonene, men disse er av "algebraisk" karakter. For å bli fortrolig med induksjon er man nødt til å regne gjennom endel eksempler.
 
  
La oss se litt nærmere på eksemplet over.
+
----
 +
[[R2 Hovedside|Tilbake til R2 Hovedside]]
  
<tex> 1 + 2 + 3 +.....+ n = \frac{n (n+1)}{2} \\  \\  </tex>
+
[[Kategori:Algebra]]
 +
[[Kategori:R2]]
 +
[[Kategori:Ped]]
 +
[[Kategori:Lex]]

Nåværende revisjon fra 25. okt. 2019 kl. 14:51

Bevis ved induksjon er delt i to trinn, induksjonsgrunnlaget og induksjonsstrinnet.

La <math>U(n)</math> være et åpent utsagn som gjelder for alle <math>n \geq n_0</math>

Dersom

1. induksjonsgrunnlaget <math>U(n_0)</math> er sann

og

2. induksjonstrinnet <math>U(k) \Rightarrow U(k+1),\quad k\geq n_0 </math> er sann,

så er <math>U(n)</math> sann for alle <math>n \geq n_0.</math>


Prinsippet for induksjonsbevis illustreres enklest via et konkret eksempel: La oss si at vi ønsker å bevise formelen

\[ \sum_{i=1}^{n}i=\frac{n(n+1)}{2}\, \qquad \forall n \in \mathbb{N} \]


Trinn 1

Det første vi gjør er å verifisere at formelen gjelder for spesialtilfellet <math>n=1</math>. Dette er trivielt siden <math>\sum_{i=1}^{1}i=1</math> og <math>\frac{1\cdot (1+1)}{2}=1</math>; høyresiden er lik venstresiden.


Trinn 2 (induksjonstrinnet)

I induksjonstrinnet antar vi at formelen gjelder for en bestemt verdi av n, si <math>n=k</math> og utleder deretter via kjente regneregler at formelen også gjelder for <math>n=k+1</math>. Dersom vi lykkes, vil dette indusere en dominoeffekt: Fra trinn 1 vet vi at formelen gjelder for <math>n=1</math> og trinn 2 sikrer at formelen gjelder for <math>n=2</math> (og på samme måte at formelen gjelder for <math>n=3</math> etc.).


I det konkrete eksempelet vil induksjonstrinnet se slik ut:

Vi antar at formelen er riktig for <math>n=k</math>:

\[ \sum_{i=1}^{k}i=\frac{k (k+1)}{2} \]

Vi undersøker så summen når <math>n=k+1</math> ved å bruke denne antagelsen:

\[ \begin{aligned} \sum_{i=1}^{k+1}i &= \sum_{i=1}^{k}i + (k+1) \\ &= \frac{k(k+1)}{2} + (k+1) \\ &= \frac{(k+1)(k+2)}{2} \end{aligned} \]

Her ser vi altså at dersom formelen er riktig for <math>n=k</math>, så vil formelen være riktig for <math>n=k+1</math>. Dette kompletterer induksjonsbeviset.

Denne "malen" for induksjonsbevis vil i prinsippet gjelde for alle problemer, dog vil det kunne oppstå ulike vanskeligheter for de spesifikke variasjonene, men disse er av "algebraisk" karakter. For å bli fortrolig med induksjon er man nødt til å regne gjennom en del eksempler.


Eksempel 1:

La oss se litt nærmere på eksemplet over, denne gangen uten bruk av summetegn:

\[ 1 + 2 + 3 + \ldots + \ n = \frac{n (n+1)}{2} \]

Tallet n skal være et positivt helt tall.

Først undersøker man induksjonsgrunnlaget: Når n = 1 blir høyre side lik venstre side.

I induksjonstrinnet antar vi først at formelen er riktig for n = k:

\[ 1 + 2 + 3 + \ldots + k = \frac{k (k+1)}{2} \]

Deretter undersøker vi summen for n = k + 1, ved å bruke antagelsen:

\[ \begin{aligned} 1 + 2 + 3 + \ldots + k + (k+1) &= \frac{k (k+1)}{2} + (k+1) \\ &=(k+1) ( \frac{k}{2} + 1) \\ &= \frac{(k+1)(k + 2)}{2} \end{aligned} \]

Vi ser at den siste linjen er høyresiden i formelen når n = k + 1. Altså er beviset fullført.


Eksempel 2:

Bevis formelen

\[ 1^2 + 2^2 + 3^2 +.....+ n^2 = \frac{n(n+1)(2n+1)}{6} \qquad n \in \mathbb{N} \]

Man finner først om induksjonsgrunnlaget er sant. Når n = 1 er venstre side lik <math> 1^2 = 1,</math> og høyre side er <math> \frac{1 \cdot 2 \cdot 3}{6} = 1.</math> Induksjonsgrunnlaget er dermed sant, begge sider er lik 1 for n=1.

I induksjonstrinnet antar vi først at formelen er riktig for n = k:

\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]

Så undersøker vi summen for n = k + 1 ved å bruke antagelsen:

\[ \begin{aligned} 1^2 + 2^2 + 3^2 +.....+ k^2 + (k+1)^2 &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \\ &= (k+1) [ \frac{k(2k+1)}{6} + (k+1) ] \\ &= (k+1) \frac{k[2k+1 + 6(k+1)]}{6} \\ &= \frac{(k+1)[2k^2+7k+6]}{6} \\ &= \frac{(k+1)[2(k+2)(k + \frac{3}{2})]}{6} \\ &= \frac{(k+1)(k+2)(2k + 3)}{6} \\ \end{aligned} \]

Den siste linjen er høyresiden i formelen når n = k + 1.

Q.E.D. (quod erat demonstrandum)


Eksempel 3:

Bevis derivasjonsregelen $(x^n)' = nx^{n-1}.$

I induksjonsgrunnlaget viser vi først at formelen gjelder for n = 1:

Høyre side: $n \cdot x^{n-1} = 1 \cdot x^0 =1$
Venstre side $(x^1)'= x' =1$

Induksjonsgrunnlaget er sann: Linjen y = x har stigningstall 1.

I induksjonstrinnet antar vi som vanlig at formelen er riktig for n = k:

\[ (x^k)' = kx^{k-1} \]

Vi viser så at formelen holder for n = k + 1, ved å bruke antagelsen sammen med regelen for derivering av et produkt:

\[ \begin{aligned} (x^{k+1})' &= (x \cdot x^k)' \\ &= x^k + x \cdot k \cdot x^{k-1} \\ &= x^k + kx^k \\ &= (1+k)x^k \end{aligned} \]

Q.E.D.


Eksempel 4:

Bevis at $n^3-4n+6$ er delelig på 3 når n er et ikke-negativt heltall.

1. Induksjonsgrunnlag: n=0 gir $n^3-4n+6 = 6$, som er delelig på 3.

2. Induksjonstrinnet: Anta at $n^3-4n+6$ er delelig på 3 når n = k. Med n = k + 1 får vi

\[ \begin{aligned} (k+1)^3 -4(k+1) + 6 &= (k+1)(k^2 + 2k + 1)- (4k + 4) + 6 \\ &= (k^3 + 2k^2 + k + k^2 + 2k + 1) - 4k + 2 \\ &= (k^3 -4k + 6) + 3(k^2 + k - 1) \end{aligned} \]

Den første parantesen er delelig på 3, i følge antagelsen for n = k. Den andre inneholder faktoren 3. Sammen gir dette at hele uttrykket er delelig på 3.



Tilbake til R2 Hovedside