Forskjell mellom versjoner av «Geometriske rekker»

Fra Matematikk.net
Hopp til:navigasjon, søk
 
(5 mellomliggende revisjoner av 4 brukere er ikke vist)
Linje 1: Linje 1:
 
==Geometrisk progresjon==
 
==Geometrisk progresjon==
  
En geometrisk progresjon <tex>(a_n)_{n\in\mathbb{N}}</tex> er en tallfølge der hvert tall er et konstant multippel av det forrige, dvs <tex>\frac{a_{n+1}}{a_n}=k</tex>.
+
En geometrisk progresjon <math>(a_n)_{n\in\mathbb{N}}</math> er en tallfølge der hvert tall er et konstant multippel av det forrige, dvs <math>\frac{a_{n+1}}{a_n}=k</math>.
  
Slike tallfølger kan skrives på formen <tex>a_n=a_1k^{n-1}</tex>
+
Slike tallfølger kan skrives på formen <math>a_n=a_1k^{n-1}</math>
  
  
Linje 12: Linje 12:
 
En geometrisk rekke er summen av elementene i en geometrisk progresjon.
 
En geometrisk rekke er summen av elementene i en geometrisk progresjon.
  
For geometriske rekker <tex>a_n=a_1k^{n-1}</tex> er <tex>S_n=\sum_{i=1}^n a_i=a_1\frac{k^n-1}{k-1}</tex>
+
For geometriske rekker <math>a_n=a_1k^{n-1}</math> er <math>S_n=\sum_{i=1}^n a_i=a_1\frac{k^n-1}{k-1}</math>
 +
 
 +
===Bevis for summeformel===
 +
Betrakt tallet <math>(k-1)(1+k+k^2+k^3+ \ldots +k^n)</math>. Ganger vi ut parentesene, får vi <math>(k+k^2+k^3+ \ldots + k^{n+1})-(1+k+k^2+k^3+ \ldots + k^n) = k^{n+1}-1</math>. Men dersom
 +
 
 +
<math>(k-1)(1+k+k^2+ \ldots + k^n) = k^{n+1}-1</math>
 +
 
 +
kan vi dele med faktoren <math>(k-1)</math> på begge sider og få
 +
 
 +
<math>\sum_{i=0}^{n}k^i = 1+k+k^2+ \ldots + k^n = \frac{k^{n+1}-1}{k-1} </math>
 +
 
 +
Multipliserer vi så med <math>a_1</math> på begge sider, vil vi oppnå summeformelen, og beviset er ferdig.
  
 
==Uendelige geometriske rekker==
 
==Uendelige geometriske rekker==
  
Dersom <tex>-1<k<1</tex> i en geometrisk tallfølge <tex>a_n=a_1k^{n-1}</tex> sier vi at den konvergerer. Det vil si at summen av uendelig mange etterfølgende elementer i følgen har en endelig verdi.
+
Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. Det vil si at summen av uendelig mange etterfølgende elementer i følgen har en endelig verdi.
 +
 
 +
I slike tilfeller er $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{i=1}^n a_i=\frac{a_1}{1-k}$
 +
 
 +
 
 +
----
 +
[[R2 Hovedside|Tilbake til R2 Hovedside]]
 +
 
  
I slike tilfeller er <tex>\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{i=1}^n a_i=\frac{a_1}{1-k}</tex>
+
[[Kategori:Algebra]]
 +
[[Kategori:R2]]
 +
[[Kategori:S2]]
 +
[[Kategori:Ped]]

Nåværende revisjon fra 23. mar. 2019 kl. 20:18

Geometrisk progresjon

En geometrisk progresjon <math>(a_n)_{n\in\mathbb{N}}</math> er en tallfølge der hvert tall er et konstant multippel av det forrige, dvs <math>\frac{a_{n+1}}{a_n}=k</math>.

Slike tallfølger kan skrives på formen <math>a_n=a_1k^{n-1}</math>


Test deg selv

Geometrisk rekke

En geometrisk rekke er summen av elementene i en geometrisk progresjon.

For geometriske rekker <math>a_n=a_1k^{n-1}</math> er <math>S_n=\sum_{i=1}^n a_i=a_1\frac{k^n-1}{k-1}</math>

Bevis for summeformel

Betrakt tallet <math>(k-1)(1+k+k^2+k^3+ \ldots +k^n)</math>. Ganger vi ut parentesene, får vi <math>(k+k^2+k^3+ \ldots + k^{n+1})-(1+k+k^2+k^3+ \ldots + k^n) = k^{n+1}-1</math>. Men dersom

<math>(k-1)(1+k+k^2+ \ldots + k^n) = k^{n+1}-1</math>

kan vi dele med faktoren <math>(k-1)</math> på begge sider og få

<math>\sum_{i=0}^{n}k^i = 1+k+k^2+ \ldots + k^n = \frac{k^{n+1}-1}{k-1} </math>

Multipliserer vi så med <math>a_1</math> på begge sider, vil vi oppnå summeformelen, og beviset er ferdig.

Uendelige geometriske rekker

Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. Det vil si at summen av uendelig mange etterfølgende elementer i følgen har en endelig verdi.

I slike tilfeller er $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{i=1}^n a_i=\frac{a_1}{1-k}$



Tilbake til R2 Hovedside