Forskjell mellom versjoner av «2P 2020 høst LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
 
(9 mellomliggende revisjoner av samme bruker vises ikke)
Linje 239: Linje 239:
 
===b)===
 
===b)===
  
[[File: 2P_H20_del2_4a1.png]]
+
[[File: 2P_H20_del2_4b1.png]]
  
[[File: 2P_H20_del2_4a2.png]]
+
[[File: 2P_H20_del2_4b2.png]]
  
 
Elin vil ha 149 918,63 kroner på kontoen rett etter at hun har satt inn 10 000 kr første januar 2025.
 
Elin vil ha 149 918,63 kroner på kontoen rett etter at hun har satt inn 10 000 kr første januar 2025.
 +
 +
==Oppgave 5==
 +
 +
===a)===
 +
 +
Bruker Excel.
 +
 +
[[File: 2P_H20_del2_5a1.png]]
 +
 +
[[File: 2P_H20_del2_5a2.png]]
 +
 +
Gjennomsnittlig snødybde på julaften i Oslo de 11 siste årene er 5,45 cm. Standardavviket er 5,73 cm.
 +
 +
Gjennomsnittlig snødybde på julaften i Kautokeino de 11 siste årene er 41 cm. Standardavviket er 9,24 cm.
 +
 +
===b)===
 +
 +
Påstanden er ikke riktig. Standardavviket sier noe om spredningen i tallmaterialet. Vi kan ha et datamateriale med høyt gjennomsnitt, men med mange tilnærmet like verdier; da vil standardavviket være lite selv om gjennomsnittet er høyt. Omvendt kan det være et datamateriale med mange veldig forskjellige verdier, som gir et høyt standardavvik uavhengig av gjennomsnittet.
 +
 +
==Oppgave 6==
 +
 +
===a)===
 +
 +
Bruker Geogebra, legger inn dataene i regnearket, og bruker "regresjonsanalyse".
 +
 +
[[File: 2P_H20_del2_6b.png]]
 +
 +
Jeg velger en potensfunksjon som modell. Denne passer godt med punktene og flater ut etter hvert slik Svein antar. Modellen for antall innbyggere x år etter 1980 er $f(x) = 2033\cdot x^{0,2583}$
 +
 +
===b)===
 +
 +
Det vil være 5585 innbyggere i boliområdet i 2030 (x=50) ifølge modellen (se "symbolsk utregning" nederst på skjermbildet i oppgave a). Dette stemmer godt med Sveins antakelse om at antall innbyggere vil øke, men at økningen vil avta.
 +
 +
==Oppgave 7==
 +
 +
===a)===
 +
 +
Avtale 1: $y=1200\,kr\cdot 28 + 22000\,kr = 55600\,kr$
 +
 +
Avtale 2: $y=600\,kr \cdot 28 + 28000 \, kr= 44800\,kr$
 +
 +
Avtale 3: $y=200\,kr\cdot 28 + 50000\,kr = 55600\,kr$
 +
 +
===b)===
 +
 +
Bruker CAS i Geogebra:
 +
 +
[[File: 2P_H20_del2_7b.png]]
 +
 +
Med avtale 1 kan kunden leie leiligheten i 25 døgn før den totale prisen overstiger 53 000 kroner. For avtale 2 er det 41 døgn, og for avtale 3 er det 15 døgn.
 +
 +
===c)===
 +
 +
Bruker Geogebra og tegner grafen til funksjonene.
 +
 +
[[File: 2P_H20_del2_7c.png]]
 +
 +
Avtale 1 lønner seg frem til 10 døgn leie, Avtale 2 lønner seg fra 10 til 55 døgn leie, og avtale 3 lønner seg fra 55 døgn leie.
 +
 +
==Oppgave 8==
 +
 +
===a)===
 +
 +
Ser på diagrammet for maksimumstemperaturen i Oslo hvert døgn i januar 2020.
 +
 +
Medianen er ca. $5,6^{\circ}C$. Det er representert ved den vannrette streket i den grønne boksen. Jeg vet dette fra å ha sammenlignet med diagrammet for Trondheim, hvor jeg vet at medianen er $6^{\circ}C$.
 +
 +
Gjennomsnittet er ca. $5^{\circ}C$. Det er representert ved krysset i den grønne boksen.
 +
 +
Variasjonsbredden er ca. $9^{\circ}C-1,5^{\circ}C=7,5^{\circ}C$. Det er avstanden mellom største og minste verdi på diagrammet.
 +
 +
Kvartilbredden er ca. $6,9^{\circ}C-3,7^{\circ}C=3,2^{\circ}C$. Det er avstanden mellom største og minste verdi på den grønne boksen (altså 3. og 1. kvartil).
 +
 +
===b)===
 +
 +
Vi ser at 1. kvartil på begge diagrammene er på ca. $3,6^{\circ}C$. Det vil si at en fjerdedel av dagene i januar hadde en maksimumstemperatur på $3,6^{\circ}C$ eller lavere. En fjerdedel av 31 dager er nesten 8 dager.

Nåværende revisjon fra 4. des. 2020 kl. 20:06

oppgaven som pdf

Diskusjon av oppgaven på matteprat

Mer diskusjon av oppgaven på matteprat

Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas

DEL 1

Oppgave 1

a)

Rangerer tallene i stigende rekkefølge:

$7\quad10\quad10\quad12\quad12\quad18\quad20\quad20\quad33\quad38$

Medianen er gjennomsnittet av de to midterste tallene: $\frac{12+18}{2}=\frac{30}{2}=15$

Gjennomsnitt: $\frac{7+10+10+12+12+18+20+20+33+38}{10}=\frac{180}{10}=18$

Medianen er 15 og gjennomsnittet er 18 for antall bilder som passerte i løpet av en periode med grønt lys.

b)

Hvis vi ser på den sorterte listen i a), ser vi at 18 er det sjette tallet. Det betyr at den kumulative frekvensen for 18 passerte biler er 6. Det forteller oss at det passerte 18 eller færre biler i løpet av en periode med grønt lys i 6 av observasjonene.

c)

Dersom tiden med grønt lys var kortet ned med 10 %, antar jeg at medianen og gjennomsnittet også ville synke med 10 %.

Ny median: $15-\frac{10\cdot 15}{100} = 15-1,5 = 13,5$ passerte biler i løpet av en periode med grønt lys.

Nytt gjennomsnitt: $18-\frac{10\cdot 18}{100}=18-1,8=16,2$ passerte biler i løpet av en periode med grønt lys.

Oppgave 2

$\frac{5\cdot 10^{12}+3,1\cdot 10^{13}}{1,8\cdot 10^7} = \frac{0,5\cdot 10^{13}+3,1\cdot 10^{13}}{1,8\cdot 10^7} = \frac{(0,5+ 3,1)\cdot 10^{13}}{1,8\cdot 10^7} = \frac{3,6\cdot 10^{13}}{1,8\cdot 10^7} = 2\cdot 10^{13-7} = 2\cdot 10^6 $

Oppgave 3

a)

Høyde i cm Klassemidtpunkt, $x_m$ Frekvens, $f$ $f\cdot x_m$
$[150,160\rangle$ $155$ $10$ $1550$
$[160,170\rangle$ $165$ $30$ $4950$
$[170,180\rangle$ $175$ $50$ $8750$
$[180,200\rangle$ $190$ $10$ $1900$
Sum $100$ $17150$

Gjennomsnitt: $\frac{17150}{100}=171,5\,cm$

Gjennomsnittshøyden til elevene ved skolen er 171,5 cm.

b)

Høyde i cm Klassebredde, $b$ Frekvens, $f$ Histogramhøyde, $\frac{f}{b}$
$[150,160\rangle$ $160-150=10$ $10$ $\frac{10}{10}=1$
$[160,170\rangle$ $170-160=10$ $30$ $\frac{30}{10}=3$
$[170,180\rangle$ $180-170=10$ $50$ $\frac{50}{10}=5$
$[180,200\rangle$ $200-180=20$ $10$ $\frac{10}{20}=0,5$

2P H20 del1 3b.png

PS: du må tegne histogrammet for hånd, siden dette er del 1.

Oppgave 4

NB: siden dette er del 1, må du lage en skisse av disse grafene for hånd. Du må angi hvilke størrelser som er på x- og y-aksen, og skrive noen tall som passer på x- og y-aksen, spesielt i skjæringspunktene mellom grafen og aksene.

Situasjon 1: en eksponentiell modell beskriver bilens verdi som funksjon av x antall år.

2P H20 del1 4a.png

Situasjon 2: en andregradsfunksjon beskriver spydets høyde som en funksjon av avstanden fra Sigurd.

2P H20 del1 4b.png

Situasjon 3: en omvendt proporsjonal funksjon beskriver hvor mye hver elev må betale som funksjon av antall elever som blir med på gaven.

2P H20 del1 4c.png

Situasjon 4: en lineær funksjon beskriver hvor mange høydemeter Ulrikke befinner seg på som funksjon av tiden.

2P H20 del1 4d.png

Oppgave 5

Velger punktet (1989, 18 000) som startpunkt, og punktet (2019, 30 000) som sluttpunkt.

Finner stigningstallet til en rett linje som går gjennom de to punktene:

$a=\frac{y_2-y_2}{x_2-x_1}=\frac{30000-18000}{2019-1989}=\frac{12000}{30}=400$

En lineær modell som tilnærmet beskriver utviklingen i denne perioden er $y=400x+18000$, der x er antall år etter 1989.

Oppgave 6

a)

2P H20 del1 6.png

Tegner figur 4, og teller antall sirkler. Det vil være 49 sirkler i figur 4.

b)

Legger sammen lyse sirkler i "halen"+ lyse sirkler i "kroppen" + mørke sirkler for alle figurene, og prøver å finne et mønster.

Figur 1: $2+1+4 = 2\cdot1+1\cdot1+2\cdot2 = 7$

Figur 2: $4+4+9 = 2\cdot2+2\cdot2+3\cdot3 = 17$

Figur 3: $6+9+16 = 2\cdot3+3\cdot3+4\cdot4=31$

Figur 4: $8+16+25= 2\cdot4+4\cdot4+5\cdot5=49$

Figur n: $\quad 2\cdot n+n\cdot n+(n+1)\cdot(n+1) \\ =2n+n^2+ (n^2+2n+1) \\ = 2n^2+4n+1$

Antall sirkler i figur n kan uttrykkes ved $F_n=2n^2+4n+1$.

c)

$F_n=2n^2+4n+1 \\ F_{20} = 2\cdot 20^2 + 4\cdot 20 + 1 = 2\cdot 400+80+1=881$

Det vil være 881 sirkler i figur 20.

DEL 2

Oppgave 1

a)

Tegner grafen til V i Geogebra.

2P H20 del2 1a.png

b)

Finner skjæringspunktet med y-aksen, A=(0,1800). Det betyr at det var 1800 L vann i badestampen til å begynne med. 900 L tilsvarer da halvparten av vannet.

Lager linjen y = 900, og finner skjæringspunktet mellom denne linjen med grafen til V, B=(8.79, 900).

2P H20 del2 1b.png

Det tar 8,79 minutter, det vil si omtrent 8 minutter og 47 sekunder, å tappe ut halvparten av vannet. ($0,79min\cdot 60sek/min=47 sek$).

c)

Finner skjæringspunktet med x-aksen, C=(30,0). Lager en linje som går gjennom punkt A og C med knappen "linje", og finner stigningen til linjen med knappen "stigning". Stigningstallet a = -60.

2P H20 del2 1c.png

Det renner ut i gjennomsnitt 60 L vann per minutt fra Kari åpner kranen, til badestampen er tom.

d)

Lager punktet D=(15,V(15)). Lager tangenten med kommandoen "Tangent(punkt, funksjon)". Finner stigningstallet til tangenten med knappen "stigning". Stigningstallet a1 = -60.

2P H20 del2 1d.png

Den momentane vekstfarten til funksjonen V når x = 15 er -60 liter vann per minutt. Det betyr at 15 minutter etter at Kari har åpnet kranen, renner det ut 60 L vann per minutt.

Oppgave 2

$15\,min = \frac{15\,min}{(60\,min/t) \cdot (24\,t/døgn) \cdot (365\,døgn/år)}= \frac{1}{35040} \approx 0,0000285 \, år = 2,85 \cdot 10^{-5} \, år$

15 minutter tilsvarer $ 2,85 \cdot 10^{-5}$ år.

Oppgave 3

Vekstfaktor: $1-0,201=0,799$

Antall importerte juletrær i 2009: $\frac{208225}{0,799}=260607$

Det ble importert 260607 juletrær til Norge i 2009.

Oppgave 4

a)

2P H20 del2 4a1.png

2P H20 del2 4a2.png

Lager regneark i Excel for å finne beløpet 1. januar 2020. Prøver meg frem til riktig rente i celle B1.

Rentesatsen denne perioden var 2,7%.

b)

2P H20 del2 4b1.png

2P H20 del2 4b2.png

Elin vil ha 149 918,63 kroner på kontoen rett etter at hun har satt inn 10 000 kr første januar 2025.

Oppgave 5

a)

Bruker Excel.

2P H20 del2 5a1.png

2P H20 del2 5a2.png

Gjennomsnittlig snødybde på julaften i Oslo de 11 siste årene er 5,45 cm. Standardavviket er 5,73 cm.

Gjennomsnittlig snødybde på julaften i Kautokeino de 11 siste årene er 41 cm. Standardavviket er 9,24 cm.

b)

Påstanden er ikke riktig. Standardavviket sier noe om spredningen i tallmaterialet. Vi kan ha et datamateriale med høyt gjennomsnitt, men med mange tilnærmet like verdier; da vil standardavviket være lite selv om gjennomsnittet er høyt. Omvendt kan det være et datamateriale med mange veldig forskjellige verdier, som gir et høyt standardavvik uavhengig av gjennomsnittet.

Oppgave 6

a)

Bruker Geogebra, legger inn dataene i regnearket, og bruker "regresjonsanalyse".

2P H20 del2 6b.png

Jeg velger en potensfunksjon som modell. Denne passer godt med punktene og flater ut etter hvert slik Svein antar. Modellen for antall innbyggere x år etter 1980 er $f(x) = 2033\cdot x^{0,2583}$

b)

Det vil være 5585 innbyggere i boliområdet i 2030 (x=50) ifølge modellen (se "symbolsk utregning" nederst på skjermbildet i oppgave a). Dette stemmer godt med Sveins antakelse om at antall innbyggere vil øke, men at økningen vil avta.

Oppgave 7

a)

Avtale 1: $y=1200\,kr\cdot 28 + 22000\,kr = 55600\,kr$

Avtale 2: $y=600\,kr \cdot 28 + 28000 \, kr= 44800\,kr$

Avtale 3: $y=200\,kr\cdot 28 + 50000\,kr = 55600\,kr$

b)

Bruker CAS i Geogebra:

2P H20 del2 7b.png

Med avtale 1 kan kunden leie leiligheten i 25 døgn før den totale prisen overstiger 53 000 kroner. For avtale 2 er det 41 døgn, og for avtale 3 er det 15 døgn.

c)

Bruker Geogebra og tegner grafen til funksjonene.

2P H20 del2 7c.png

Avtale 1 lønner seg frem til 10 døgn leie, Avtale 2 lønner seg fra 10 til 55 døgn leie, og avtale 3 lønner seg fra 55 døgn leie.

Oppgave 8

a)

Ser på diagrammet for maksimumstemperaturen i Oslo hvert døgn i januar 2020.

Medianen er ca. $5,6^{\circ}C$. Det er representert ved den vannrette streket i den grønne boksen. Jeg vet dette fra å ha sammenlignet med diagrammet for Trondheim, hvor jeg vet at medianen er $6^{\circ}C$.

Gjennomsnittet er ca. $5^{\circ}C$. Det er representert ved krysset i den grønne boksen.

Variasjonsbredden er ca. $9^{\circ}C-1,5^{\circ}C=7,5^{\circ}C$. Det er avstanden mellom største og minste verdi på diagrammet.

Kvartilbredden er ca. $6,9^{\circ}C-3,7^{\circ}C=3,2^{\circ}C$. Det er avstanden mellom største og minste verdi på den grønne boksen (altså 3. og 1. kvartil).

b)

Vi ser at 1. kvartil på begge diagrammene er på ca. $3,6^{\circ}C$. Det vil si at en fjerdedel av dagene i januar hadde en maksimumstemperatur på $3,6^{\circ}C$ eller lavere. En fjerdedel av 31 dager er nesten 8 dager.