Forskjell mellom versjoner av «1T Kompetansemål»

Fra Matematikk.net
Hopp til:navigasjon, søk
 
(Én mellomliggende revisjon av en annen bruker er ikke vist)
Linje 1: Linje 1:
 +
[http://www.udir.no/kl06/MAT1-04/Kompetansemaal/?arst=1858830316&kmsn=2088314978 Udir]
  
== Tal og algebra ==
+
==Tal og algebra==
  
Mål for opplæringa er at eleven skal kunne:
+
Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med tal kan ein kvantifisere mengder og storleikar. Området tal omfattar både heile tal, brøk, desimaltal og prosent. Algebra i skolen generaliserer talrekning ved at bokstavar eller andre symbol representerer tal. Det gjev høve til å beskrive og analysere mønster og samanhengar. Algebra blir òg nytta i samband med hovudområda geometri og funksjonar.
*tolke, tilarbeide og vurdere det matematiske innhaldet i ulike tekstar
 
*bruke matematiske metodar og hjelpemiddel til å løyse problem frå ulike fag og samfunnsområde
 
*rekne med potensar med rasjonal eksponent og tal på standardform, bokstavuttrykk, formlar, parentesuttrykk og rasjonale og kvadratiske uttrykk med tal og bokstavar, og bruke kvadratsetningane til å faktorisere algebrauttrykk
 
*løyse likningar, ulikskapar og likningssystem av første og andre grad og enkle likningar med eksponential- og logaritmefunksjonar, både med rekning og med digitale hjelpemiddel
 
*omforme ei praktisk problemstilling til ei likning, ein ulikskap eller eit likningssystem, løyse det og vurdere kor gyldig løysinga er
 
  
== Geometri ==
+
Mål for opplæringa er at eleven skal kunne
  
Mål for opplæringa er at eleven skal kunne:
+
* tolke, bearbeide, vurdere og drøfte det matematiske innhaldet i ulike tekstar
*gjere greie for definisjonane av sinus, cosinus og tangens og bruke trigonometri til å berekne lengder, vinklar og areal i vilkårlege trekantar
+
* vurdere, velje og bruke matematiske metodar og verktøy til å løyse problem frå ulike fag og samfunnsområde og reflektere over, vurdere og presentere løysingane på ein formålstenleg måte
*bruke geometri i planet til å analysere og løyse samansette teoretiske og praktiske problem knytte til lengder, vinklar og areal
+
* rekne med rotuttrykk, potensar med rasjonal eksponent og tal på standardform, bokstavuttrykk, formlar, parentesuttrykk og rasjonale og kvadratiske uttrykk med tal og bokstavar, faktorisere kvadratiske uttrykk, bruke kvadratsetningane og lage fullstendige kvadrat
 +
* omforme uttrykk og løyse likningar, ulikskapar og likningssystem av første og andre grad og enkle likningar med eksponential- og logaritmefunksjonar, både ved rekning og med digitale verktøy
 +
* omforme ei praktisk problemstilling til ei likning, ein ulikskap eller eit likningssystem, løyse det matematiske problemet både med og utan digitale verktøy, presentere og grunngje løysinga og vurdere gyldigheitsområde og avgrensingar
  
== Statistikk, sannsyn og kombinatorikk ==
+
==Geometri==
  
Mål for opplæringa er at eleven skal kunne:
+
Geometri i skolen handlar mellom anna om å analysere eigenskapar ved to- og tredimensjonale figurar og gjere konstruksjonar og berekningar. Ein studerer dynamiske prosessar som spegling, rotasjon og forskyving. Hovudområdet omfattar òg å beskrive plassering og forflytting i rutenett, kart og koordinatsystem.
*formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar
 
*berekne sannsyn ved hjelp av systematiske oppstillingar, og bruke addisjonssetninga og produktsetninga
 
*bruke omgrepa uavhengnad (bm.: uavhengighet) og vilkårsbunde (bm.: betinget) sannsyn i enkle situasjonar
 
*lage binomiske sannsynsmodellar ut frå praktiske døme, og berekne binomisk sannsyn ved hjelp av formlar og digitale hjelpemiddel
 
  
*formulere, eksperimentere med og drøfte uniforme og ikkje-uniforme sannsynsmodellar
+
Mål for opplæringa er at eleven skal kunne
*berekne sannsyn ved å telje opp gunstige og moglege utfall, systematisere oppteljingar ved hjelp av krysstabellar, venndiagram og val-tre og bruke addisjonssetninga og produktsetninga
 
  
== Funksjonar ==
+
* gjere greie for definisjonane av sinus, cosinus og tangens og bruke trigonometri til å berekne lengder, vinklar og areal i vilkårlege trekantar
 +
* bruke geometri i planet til å analysere og løyse samansette teoretiske og praktiske problem med lengder, vinklar og areal
 +
* lage og bruke skisser og teikningar til å formulere problemstillingar, i oppgåveløysing og til å presentere og grunngje løysingane, med og utan bruk av digitale verktøy
  
Mål for opplæringa er at eleven skal kunne:
+
==Sannsyn==
*gjere greie for funksjonsomgrepet og teikne grafar ved å analysere funksjonsomgrepet
 
berekne nullpunkt, skjeringspunkt og gjennomsnittleg vekstfart, finne tilnærma verdiar for momentan vekstfart og gje nokre praktiske tolkingar av desse aspekta
 
*gjere greie for definisjonen av den deriverte, bruke definisjonen til å utleie ein derivasjonsregel for polynomfunksjonar og bruke denne regelen til å drøfte funksjonar
 
*lage og tolke funksjonar som beskriv praktiske problemstillingar, analysere empiriske funksjonar og finne uttrykk for ein tilnærma lineær funksjon
 
*bruke digitale hjelpemiddel til å drøfte polynomfunksjonar, rasjonale funksjonar, eksponentialfunksjonar og potensfunksjonar
 
  
[[Category:1T]][[Category:Læreplaner]]
+
Statistikk omfattar å planleggje, samle inn, organisere, analysere og presentere data. I analysen av data høyrer det med å beskrive generelle trekk ved datamaterialet. Å vurdere og sjå kritisk på konklusjonar og framstilling av data er ein sentral del av denne prosessen. I sannsynsrekning talfester ein kor stor sjanse det er for at ei hending skal skje. I kombinatorikk arbeider ein med systematiske måtar for å telje opp moglege utfall for å kunne berekne sannsyn.
 +
 
 +
Mål for opplæringa er at eleven skal kunne
 +
 
 +
* formulere, eksperimentere med og drøfte uniforme og ikkje-uniforme sannsynsmodellar
 +
* berekne sannsyn ved å telje opp gunstige og moglege utfall, systematisere oppteljingar ved hjelp av krysstabellar, venndiagram og val-tre og bruke addisjonssetninga og produktsetninga
 +
 
 +
==Funksjonar==
 +
 
 +
Ein funksjon beskriv endring eller utvikling av ein storleik som er avhengig av ein annan, på ein eintydig måte. Funksjonar kan uttrykkjast på fleire måtar, til dømes med formlar, tabellar og grafar. Analyse av funksjonar går ut på å leite etter spesielle eigenskapar, som kor raskt ei utvikling går, og når utviklinga får spesielle verdiar.
 +
 
 +
Mål for opplæringa er at eleven skal kunne
 +
 
 +
* gjere greie for funksjonsomgrepet og kunne omsetje mellom ulike representasjonar av funksjonar
 +
* berekne nullpunkt, ekstremalpunkt, skjeringspunkt og gjennomsnittleg vekstfart, finne tilnærma verdiar for momentan vekstfart og gje nokre praktiske tolkingar av desse aspekta
 +
* gjere greie for definisjonen av den deriverte, bruke definisjonen til å utleie ein derivasjonsregel for polynomfunksjonar og bruke denne regelen til å drøfte funksjonar
 +
* lage, tolke og gjere greie for funksjonar som beskriv praktiske problemstillingar, analysere empiriske funksjonar og finne uttrykk for tilnærma lineære samanhengar, med og utan bruk av digitale verktøy
 +
* bruke digitale verktøy til å framstille og analysere kombinasjonar av polynomfunksjonar, rotfunksjonar, rasjonale funksjonar, eksponentialfunksjonar og potensfunksjonar

Nåværende revisjon fra 17. feb. 2014 kl. 11:11

Udir

Tal og algebra

Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med tal kan ein kvantifisere mengder og storleikar. Området tal omfattar både heile tal, brøk, desimaltal og prosent. Algebra i skolen generaliserer talrekning ved at bokstavar eller andre symbol representerer tal. Det gjev høve til å beskrive og analysere mønster og samanhengar. Algebra blir òg nytta i samband med hovudområda geometri og funksjonar.

Mål for opplæringa er at eleven skal kunne

  • tolke, bearbeide, vurdere og drøfte det matematiske innhaldet i ulike tekstar
  • vurdere, velje og bruke matematiske metodar og verktøy til å løyse problem frå ulike fag og samfunnsområde og reflektere over, vurdere og presentere løysingane på ein formålstenleg måte
  • rekne med rotuttrykk, potensar med rasjonal eksponent og tal på standardform, bokstavuttrykk, formlar, parentesuttrykk og rasjonale og kvadratiske uttrykk med tal og bokstavar, faktorisere kvadratiske uttrykk, bruke kvadratsetningane og lage fullstendige kvadrat
  • omforme uttrykk og løyse likningar, ulikskapar og likningssystem av første og andre grad og enkle likningar med eksponential- og logaritmefunksjonar, både ved rekning og med digitale verktøy
  • omforme ei praktisk problemstilling til ei likning, ein ulikskap eller eit likningssystem, løyse det matematiske problemet både med og utan digitale verktøy, presentere og grunngje løysinga og vurdere gyldigheitsområde og avgrensingar

Geometri

Geometri i skolen handlar mellom anna om å analysere eigenskapar ved to- og tredimensjonale figurar og gjere konstruksjonar og berekningar. Ein studerer dynamiske prosessar som spegling, rotasjon og forskyving. Hovudområdet omfattar òg å beskrive plassering og forflytting i rutenett, kart og koordinatsystem.

Mål for opplæringa er at eleven skal kunne

  • gjere greie for definisjonane av sinus, cosinus og tangens og bruke trigonometri til å berekne lengder, vinklar og areal i vilkårlege trekantar
  • bruke geometri i planet til å analysere og løyse samansette teoretiske og praktiske problem med lengder, vinklar og areal
  • lage og bruke skisser og teikningar til å formulere problemstillingar, i oppgåveløysing og til å presentere og grunngje løysingane, med og utan bruk av digitale verktøy

Sannsyn

Statistikk omfattar å planleggje, samle inn, organisere, analysere og presentere data. I analysen av data høyrer det med å beskrive generelle trekk ved datamaterialet. Å vurdere og sjå kritisk på konklusjonar og framstilling av data er ein sentral del av denne prosessen. I sannsynsrekning talfester ein kor stor sjanse det er for at ei hending skal skje. I kombinatorikk arbeider ein med systematiske måtar for å telje opp moglege utfall for å kunne berekne sannsyn.

Mål for opplæringa er at eleven skal kunne

  • formulere, eksperimentere med og drøfte uniforme og ikkje-uniforme sannsynsmodellar
  • berekne sannsyn ved å telje opp gunstige og moglege utfall, systematisere oppteljingar ved hjelp av krysstabellar, venndiagram og val-tre og bruke addisjonssetninga og produktsetninga

Funksjonar

Ein funksjon beskriv endring eller utvikling av ein storleik som er avhengig av ein annan, på ein eintydig måte. Funksjonar kan uttrykkjast på fleire måtar, til dømes med formlar, tabellar og grafar. Analyse av funksjonar går ut på å leite etter spesielle eigenskapar, som kor raskt ei utvikling går, og når utviklinga får spesielle verdiar.

Mål for opplæringa er at eleven skal kunne

  • gjere greie for funksjonsomgrepet og kunne omsetje mellom ulike representasjonar av funksjonar
  • berekne nullpunkt, ekstremalpunkt, skjeringspunkt og gjennomsnittleg vekstfart, finne tilnærma verdiar for momentan vekstfart og gje nokre praktiske tolkingar av desse aspekta
  • gjere greie for definisjonen av den deriverte, bruke definisjonen til å utleie ein derivasjonsregel for polynomfunksjonar og bruke denne regelen til å drøfte funksjonar
  • lage, tolke og gjere greie for funksjonar som beskriv praktiske problemstillingar, analysere empiriske funksjonar og finne uttrykk for tilnærma lineære samanhengar, med og utan bruk av digitale verktøy
  • bruke digitale verktøy til å framstille og analysere kombinasjonar av polynomfunksjonar, rotfunksjonar, rasjonale funksjonar, eksponentialfunksjonar og potensfunksjonar