R2 2024 vår LØSNING
Diskusjon av oppgaven på matteprat
DEL 1
Oppgave 1
$f(x)=-x^3+3x$
a)
$\int_{-1}^{0} f(x) dx = \int_{-1}^{0} (-x^3+3x) dx $
$=[-\frac14x^4+\frac32x^2]_{-1}^{0} $
$=0-(-\frac14+\frac32)$
$=\frac14-\frac64$
$=-\frac54$
b)
Finner nullpunktene til f:
$-x^3+3x=0$
$-x(x^2-3)=0$
$-x(x+\sqrt{3})(x-\sqrt{3})$
Nullpunkter: $x=-\sqrt3, x=0, x=\sqrt 3$
Vi har ingen nullpunkter i intervallene $[-1,0\rangle$ og $\langle0,1]$
Beregner arealet av området avgrenset av grafen til f, x-aksen og linjene x=0 og x=1:
$\int_{0}^{1} f(x) dx = \int_{0}^{1} (-x^3+3x) dx $
$=[-\frac14x^4+\frac32x^2]_{0}^{1} $
$=(-\frac14+\frac32)-0$
$=-\frac14+\frac64$
$=\frac54$
Samlet areal er summen av arealene i intervallene $[-1,0]$ og $[0,1]$
$A=|-\frac54|+\frac54=\frac{10}{4}=\frac52=2,5$
Arealet av området som er avgrenset av grafen til f, x-aksen og linjene x = −1 og x = 1 er 2,5.
Oppgave 2
Setter $u = sin(x)$. Da er $u'=cos(x)$
$u'=\frac{du}{dx}\Rightarrow dx = \frac{du}{u'}$
$\int sin^3(x)\cdot cos(x)dx$
$=\int u^3 \cdot u' \frac{du}{u'}$
$=\int u^3 du$
$=\frac14 u^4 + C$
$=\frac14 sin^4(x)+C$
Oppgave 3
a)
Eleven prøver å finne hvor mange ledd det trengs i en rekke før summen av rekken blir større enn 200. Hvert ledd er gitt ved $a_n=4n-2$, og første ledd har n=1.
b)
Vi har en aritmetisk rekke, fordi differansen mellom hvert ledd alltid er den samme (4 i dette tilfellet). Summen av en aritmetisk rekke er gitt ved $S=n\cdot\frac{a_1+a_n}{2}$
$n\cdot\frac{2+(4n-2)}{2}=200$
$\frac{4n^2}{2}=200$
$2n^2=200$
$n=\sqrt{100}$ (ingen negativ løsning fordi vi ser etter et positivt antall ledd)
$n=10$
Eleven får skrevet ut verdien 10, som vil si at det summen av de 10 første leddene i rekken er 200 eller mer.
Oppgave 4
a)
$\vec{AC}=[2-1,0-1,-1-0]=[1,-1,-1]$
$\vec{AB}=[4-1,1-1,1-0]=[3,0,1]$
$\vec{AC} \times \vec{AB} = [1,-1,-1]\times[3,0,1]$
$=\begin{vmatrix} \vec i & \vec j & \vec k\\ 1 & -1 & -1\\ 3 & 0 & 1 \end{vmatrix}$
$=-\vec i -4\vec j +3\vec k$
$= [-1,-4,3]$
Arealet av paralellogrammet utspent av $\vec{AC}$ og $\vec{AB}$:
$|[-1,-4,3]|=\sqrt{(-1)^2+(-4)^2+3^2}=\sqrt{26}$
Arealet av trekant ABC:
$\frac{\sqrt{26}}{2}$
b)
$h=\frac{|\vec{AC}\times\vec{AB}|}{|\vec{AB}|}=\frac{\sqrt{26}}{\sqrt{3^2+0^2+1^2}}=\frac{\sqrt{26}}{\sqrt{10}}=\sqrt{\frac{13}{5}}$
c)
Vi har allerede normalvektoren for planet, gitt ved $\vec{AC} \times \vec{AB} = [-1,-4,3]$. Bruker punktet $P(-2,1,4)$ for å få en parameterfremstilling av linja.
$l=\begin{cases} x = -2-t \\ y = 1-4t \\ z = 4 + 3t \end{cases}$
d)
Vi har $P(-2,1,4), \, \vec{n}_\alpha=[-1,-4,3], \, D(0,0,z)$
Retningsvektoren til planet står 90 grader på planet. Den vil altså også stå 90 grader på en linje m som er parallell til planet. Skalarproduktet mellom retningsvektoren til planet og retningsvektoren til linja m må være lik 0.
Retningsvektor til linja m: $\vec{PD}=[0-(-2),0-1,z-4]=[2,-1,z-4]$
$\vec{PD}\cdot\vec{n}_\alpha=0$
$[2,-1,z-4]\cdot[-1,-4,3]=0$
$2\cdot(-1)+(-1)\cdot(-4)+(z-4)\cdot 3=0$
$-2+4+3z-12=0$
$3z=12+2-4$
$z=\frac{10}{3}$
Vi har $D(0,0,\frac{10}{3})$
Oppgave 5
DEL 2
Oppgave 4
a)
$a_n=n^3$
$a_{n+1}=(n+1)^3$
Rekursiv formel for summen av rekken:
$S_{n+1}=S_n+a_{n+1}=S_n+(n+1)^3$
Eksplisitt formel for summen av rekken, finner vi ved regresjon i Geogebra:
$S_n=0,25n^4+0,5n^3+0,25n^2$
b)
c)
Vi skal bevise $S_n: 1^3+2^3+3^3+...+n^3=0,25n^4+0,5n^3+0,25n^2$
Vi sjekker først om formelen stemmer for n=1 (se linje 2 i CAS). Formelen stemmer for n=1, siden $S_1=1^3=1$.
Vi antar nå at formelen stemmer for n = k, og sjekker om formelen stemmer for n = k + 1. Da vil $S_{k+1}=1^3+2^3+3^3+...+k^3+(k+1)^3=S_k+(k+1)^3$. Se linje 3 og 4 i CAS.
Vi har nå vist at dersom formelen stemmer for n=k , må den også stemme for n=k+1. Siden formelen stemmer for n=1, stemmer den for n=2, osv. $S_k\Rightarrow S_{k+1}$.