Løsning del 2 utrinn Vår 23
Diskusjon av denne oppgaven på matteprat
DEL TO
Oppgave 1
Flex er billigst dersom du leier for mer enn 100 minutter. For kortere tid er Wheele billigst.
Leien for Flex er kr. 100 pluss kr. 2 per minutt.
Leien for Wheele er kr. 50 pluss kr. 2,50 per minutt.
Oppgave 2
Her kan man tenke brøk: Antallet man betaler for setter man i teller. Antallet man får setter man i nevner. Man ønsker da brøken så liten som mulig fordi man ønsker å få mange, men betale for så få som mulig. Tilbud 1: $\frac 35$
Tilbud 2: 25% er det samme som at du betaler for 3 og får den 4., altså $\frac 34$
Tilbud 3: Tilbudet er det samme som i 2.
Tilbud 4: $\frac 23$
I tilbud 1 betaler man for 60% av varene (6/10). Det er best. I tilbud 2 og 3 betaler man for 75% og i tilbud 4 betaler man for 67% av varene.
Oppgave 3
a)
Det var 30 elever med på undersøkelsen. De fikk tilsammen 2700 kroner i ukepenger. Det gir et gjennomsnitt på 90 kroner per person.
b)
Det kan vi ikke si noe om. Dersom en elev var borte har denne 400 kroner i lommepenger, fordi (2700 + 400):31 =100. Dersom 100 elever var borte hadde disse 103 kr i gjennomsnitt i lommepenger. Ut fra de opplysningene kan man ikke si noe om hvor mange det er på 10. trinn. x
Oppgave 4
Arealet av en sirkel er gitt som $A = \pi r^2$
Dersom man skal finne arealet av en halvsirkel kan man halvere $r^2$ og ikke r. Halvors løsning er derfor feil.
Kvadratet av 6 er 36 og kvadratet av 3 er 9, men 9 er ikke halvparten av 36, selv om 3 er halvparten av 6.
Oppgave 5
a)
Den blå blokken er en løkke som gjentar seg så mange ganger som den verdien du gir inn i det grå feltet: "antall_terningkast". Inne i løkken skjer to ting. Det trekkes et tilfeldig tall fra og med en til og med seks. Det trukkede tallet legges til i en liste. Når løkken er ferdig skrives listen til skjermen.
b)
Sannsynlighet er relativ frekvens i det lange løp. Det betyr at man må ha mange terningkast. Dersom vi velger et veldig stort tall vil datamaskinen jobbe lenge for å kjøre programmet. Det er ikke ønskelig. Jeg ville prøvd med tre forskjellige verdier. 100, 1000 og 10000. Jo større tallet er jo nærmere kommer de forskjellige utfallene 16,7%.
Oppgave 6
Det er mest lønnsomme å velge kronen som dobler seg 14 ganger:
1, 2,4,8,16,32,......
er det samme som
$2^0, 2^1, 2^2, 2^3, 2^4, 2^5, ...$
$2^{14}= 16384$
Oppgave 7
Boble 1
Utsagnet stemmer fordi 4+2 er 6 og 6 kvadrert er 36.
Boble 2
4 minus 2, ganger 4 minus 2, er to ganger to som er 4, så arealet av det blå området er ganske riktig 36- 4 = 32.
Boble 3
Samme tanke som over gir 20, som også er i samsvar med generell løsning nedenfor.
Boble 4
Dersom man tar første kvadratsetning minus andre kvadratsetning, der a og b har samme verdi i begge ($a \neq b$) får man:
$(a+b)(a+b) - (a-b)(a-b) = a^2+2ab+ b^2 -(a^2 -2ab +b^2)= 2ab + 2ab = 4ab $
Oppgave 8
Vi begynner med snakkeboblene:
Bilen har et årlig verditap på 10%:
Vi ser at verdifallet i løpet av de to årene hun planlegger å ha bilen er ca. 16000 kroner , som tilsvarer et tap på ca 670 kr per måned.
Drivstoffkostnader:
Med et forbruk på 0,3 liter/ mil og en ukentlig kjørelengde på 6,5 mil blir det et forbruk på ca 2 liter i uken, eller ca 8 liter i måneden. Dersom bensinprisen er 21kr. per liter blir det en månedlig kostnad på ca. 170 kroner. Bensinprisen er utenfor Thereses kontroll og kan godt stige. Dersom bensinen koster 25 kr./ liter blir den månedlige kostnaden ca 200, altså en økning på 30 kr eller ca 18%. Fordi det månedlige forbruket er lavt utgjør drivstoffutgiftene mindre enn en tredel av bilens månedlige verditap.
3000 kr. fra deltidsjobb
Sparepenger