1T 2020 høst LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsning av LektorNilsen

DEL 1

Oppgave 1

$y = 2x - 1$

Stigningstallet er 2 fordi y-verdien til funksjonen øker med 2 for hver gang x-verdien øker med 1. Konstantleddet er -1, der linjen krysser y-aksen.

Oppgave 2

$\frac{6,2\cdot10^4\cdot 2,5\cdot10^8}{0,0005} = \frac{6,2\cdot10^4\cdot2,5\cdot 10^8}{5\cdot10^{-4}} = 6,2\cdot 10^4 \cdot 0,5 \cdot 10^8\cdot 10^4 = 3,1 \cdot 10^{4+8+4} = 3,1\cdot 10^{16}$

Oppgave 3

$I. x+2y = 16 \\ II. 3x-y = 6$

Ganger likning II med 2, og legger sammen likning I og II.

$II. 3x - y = 6 \quad |\cdot 2 \\ II. 6x-2y = 12$

Likning I + II:

$ \quad\quad x+ 2y = 16 \\ + ( 6x - 2y = 12) \\ -------- \\ \quad\quad\quad\quad 7x = 28 \\ \quad\quad\quad\quad x = 4 $

Setter inn x = 4 i likning I:

$4+2y=16 \\ y = \frac{16-4}{2} \\ y=6$

Løsningen er x = 4 og y = 6. Du kan sjekke at det er riktig ved å sette inn disse verdiene i likning I og II, og se at likhetene stemmer.

Oppgave 4

$\frac{(x+y)^2-4xy}{x-y} = \frac{x^2+2xy+y^2-4xy}{x-y} = \frac{x^2-2xy+y^2}{x-y} =\frac{(x-y)^2}{x-y} = x-y$

Oppgave 5

$4x^2+kx+\frac{1}{4} = (2x)^2+kx+(\frac{1}{2})^2$

Uttrykket er et fullstendig dersom:

$kx=\pm 2\cdot 2x \cdot \frac{1}{2} \\ kx= \pm 2x \\ k = \pm 2$

Oppgave 6

$\frac{5^{\frac{1}{2}} \cdot 4^{-1} \cdot 8^{\frac{2}{3}}}{\sqrt{20}\cdot 3^0} = \frac{\sqrt{5} \cdot (2^2)^{-1} \cdot (2^3)^{\frac{2}{3}}}{\sqrt{5} \cdot \sqrt{2} \cdot \sqrt{2} \cdot 1} = \frac{2^{-2} \cdot 2^2}{2} = \frac{1}{2}$

Oppgave 7

$\frac{lg 1000 \cdot lg\frac{1}{10}}{lg 0,01 \cdot lg 10^{-\frac{1}{2}}} = \frac{3\cdot (-1)}{-2\cdot (-\frac{1}{2})} = \frac{-3}{1} = -3$

Oppgave 8

a)

$\frac{2^{2+x}}{2^{1-2x}}=64 \\ 2^{2+x-(1-2x)} = 2^6 \\ 2^{2+x-1+2x} = 2^6 \\ 2^{3x+1}=2^6 \\ 3x+1 = 6 \\ x = \frac{6-1}{3} \\ x = \frac{5}{3} $

b)

$lg(\frac{1}{x^2-3x})=-1 \\ 10^{lg(\frac{1}{x^2-3x})}=10^{-1} \\ \frac{1}{x^2-3x} = \frac{1}{10} \\ x^2-3x = 10 \\ x^2-3x-10 = 0 \\ (x+2)(x-5)=0 \\ x = -2 \vee x = 5$

Oppgave 9

- linjen $y=2x-4$ vil skjære y-aksen i x = -4, det samme som grafen til funksjonen $f$.

- linjen $y=2x-4$ vil øke med 2 enheter på y-aksen for hver enhet på x-aksen. Dermed krysser den grafen til funksjonen $f$ i punktet (5,6). Du kan vise dette ved å tegne linjen og grafen til funksjonen f i samme koordinatsystem.

- Grafen til funksjonen $f$ vil befinne seg under linjen $y = 2x-4$ når $x \in \langle 0,5 \rangle$

Vi har $f(x)<2x-4$ for $x \in \langle 0,5 \rangle$

Oppgave 10

$f(x)=x^3+3x^2+3$

$f'(x)=3x^2+6x$

$f'(x)=-3 \\ 3x^2+6x = -3 \\ 3x^2+6x+3 = 0 \quad |:3 \\ x^2+2x+1=0 \\ (x+1)(x+1)=0 \\ x=-1$

Grafen til $f$ har bare én tangent med stigningstallet -3.

Tangenten treffer funksjonen i punktet (-1, f(-1)).

$f(-1)= (-1)^3+3(-1)^2+3 = -1+3+3 = 5$

Likning for tangenten:

$y-y_1=a(x-x_1) \\ y-5 = -3(x-(-1)) \\ y -5 = -3x -3 \\ y = -3x+2$

Oppgave 11

a)

$P(\overline{C} \cap \overline{G})=P(\overline{C})\cdot P(\overline{G})= \frac{8}{10}\cdot \frac{7}{9}=\frac{56}{90}=\frac{28}{45}$

Sannsynligheten for at verken Charlotte eller Gunnar blir trukket ut er $\frac{28}{45}$

b)

$P(C \cap G) = P(C)\cdot P(G) = \frac{2}{10} \cdot \frac{1}{9} = \frac{2}{90} = \frac{1}{45}$

Sannsynligheten for at det blir Charlotte og Gunnar som skal lage kampoppsettet er $\frac{1}{45}$

Oppgave 12

a)

Bruker Pytagorassetningen til å finne lengden av BC:

$CB^2=AB^2+AC^2 \\ CB = \sqrt{1^2+1^2} \\ CB=\sqrt{2}$

$\triangle ABC$ er likebeint, og $\angle A=90^{\circ}$. De to andre vinklene må derfor være $45^{\circ} .$

Finner $sin 45^{\circ}$:

$ sin \angle ABC= \frac{AC}{BC} \\ sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}\cdot 1}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}$

Finner $cos 45^{\circ}$:

$ cos \angle ABC= \frac{AB}{BC} \\ cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}\cdot 1}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}$

Vi har vist at $sin 45^{\circ} = cos 45^{\circ} = \frac{\sqrt{2}}{2}$

b)

Bruker arealsetningen.

$A=\frac{1}{2}\cdot PQ\cdot PR \cdot sin \angle RPQ \\ A = \frac{1}{2}\cdot 6\sqrt{2}\cdot 8 \cdot sin 45^{\circ} = 3\cdot \sqrt{2}\cdot 8 \cdot \frac{\sqrt{2}}{2} = 24 \cdot \frac{2}{2} = 24$

Arealet av trekant $\triangle PQR$ er 24.

c)

Brukes cosinussetningen:

$QR^2 = PR ^2 + PQ^2 - 2\cdot PR\cdot PQ \cdot cos \angle RPQ$

$QR^2 = 8^2+(6\sqrt{2})^2 - 2\cdot 8 \cdot 6\sqrt{2}\cdot cos 45^{\circ}$

$QR^2 = 64 + 36\cdot 2 - 96 \cdot \sqrt{2}\cdot \frac{\sqrt{2}}{2}$

$QR^2 = 64+72 - 96 \cdot 1$

$QR^2 = 40$

$QR = \sqrt{40} = \sqrt{4\cdot 10} = \sqrt{4} \cdot \sqrt{10} = 2\sqrt{10}$

Oppgave 13

Arealet av området er gitt ved $A=x\cdot y$.

Antall meter gjerde er gitt ved $x+2y=1000$. Bruker denne likningen til å uttrykket y ved x:

$x+2y=1000 \\ y=\frac{1000-x}{2} \\ y = -\frac{x}{2}+500$

Setter inn uttrykket for y i uttrykket for arealet:

$A = x\cdot y \\ A=x\cdot (-\frac{x}{2}+500) \\ A=-\frac{1}{2}x^2+500x$

Arealet er nå gitt som en andregradsfunksjon med negativt andregradsledd. Funksjonen vil følgelig ha et toppunkt. Bruker derivasjon til å finne x-verdien til dette toppunktet:

$A'(x) = -x+500$

Setter $A'(x)=0$

$-x+500 = 0 \\ x = 500$

Setter inn x=500 i uttrykket for y:

$y=-\frac{500}{2}+500 = -250+500 = 250$

Arealet blir størst mulig når x = 500 meter og y = 250 meter.

DEL 2

Oppgave 1

a)

b)

Legger inn linja y = 92, og bruker "Skjæring mellom to objekt" for å finne skæringspunktene mellom denne linjen og grafen til $P$. Leser av x-verdien til skjæringspunktene A, B og C, og beregner antall minutter hvor Ole hadde høyere enn 92% av makspuls:

$(30-12.7)+(50-47.3) = 20$

Pulsen til Ole høyere enn 92 % av makspuls i 20 minutter.

c)

Bestem den momentane vekstfarten til funksjonen når . Gi en praktisk tolkning av dette svaret.

b)