2PY 2018 vår LØSNING
- Løsningsforslag (pdf) fra joes. Send gjerne en melding hvis du oppdager feil i akkurat dette løsningsforslaget. På forhånd, takk.
- Løsningsforslag eksamen 2PY V18 (pdf) laget av Jon Bjarne Bø.
DEL EN
Oppgave 1
Variasjonsbredde: $30-(-24) = 30 + 24 = 54$ poeng
Gjennomsnitt: $\frac{20-15+5+15-8-3-24+30}{8} = \frac{20}{8} = \frac{5}{2} = 2,5 $ poeng
Oppgave 2
$\frac{20}{100} \cdot 25 = \frac{500}{100} = 5 $
5 elever i klassen til Mats har bodd i Norge i mindre enn fire år.
Oppgave 3
$\frac{5 \cdot 10^6}{2 \cdot 10^{-8}} = \frac{5}{2} \cdot 10^{6-(-8)} = 2,5 \cdot 10^{14} $
Oppgave 4
a)
b)
80 personer har fedme.
520 personer er undervektige eller normalvektige.
40% av personene er overvektige.
92% av personene er undervektige, normalvektige eller overvektige.
c)
Medianen er vekten til personen mellom nr. 500 og 501 (siden det er 1000 personer med i undersøkelsen), og vi ser i den kumulative frekvensen at denne personen befinner seg i klassen for normalvektige.
Oppgave 5
a)
b)
Antall sirkler i ytterste sekskant er 246. Vi bruker formelen for antall sirkler i ytterste sekstant, og setter den lik 246:
$6 \cdot (n-1) = 246 \\ n-1 = \frac{246}{6} \\ n-1 = 41 $
Formel for antall sekskanter i en figur er $n-1$
Dermed vet vi at det er 41 sekskanter i figuren.
c)
d)
Bruker formelen for antall sirkler i figuren og setter i n=100.
$2 \cdot n^2 - n \\ = 2 \cdot 100^2 -100 \\ = 2 \cdot 10000 - 100 \\ = 20000 - 100 \\ = 19900$
Det vil være 19 900 sirkler i figur nr. 100.
Oppgave 6
a)
En lineær modell skrives $y=a \cdot x + b$
Vi vet at konstantleddet b = 12 000 fordi dyrebestanden i dag er 12 000 dyr.
Vi finner stigningstallet $a = \frac{y_2-y_1}{x_2-x_1} = \frac{6000-12000}{10-0} = \frac{-6000}{10} = -600$
Modellen som viser hvor mange dyr det vil være i bestanden om x år er $y=-600x+12000$
b)
$\frac{11400}{12000}=0,95$
11 400 dyr tilsvarer 95% av 12 000 dyr. Det betyr at vekstfaktoren for ett år er 0,95.
Den eksponentielle modellen som viser hvor mange dyr det vil være i bestanden om x år er $f(x)=12000 \cdot 0,95^x$
c)
I den lineære modellen avtar bestanden med 600 dyr hvert år. Det første året tilsvarer det 5% av startverdien på 12 000 dyr. Bestanden vil fortsette å avta med 600 dyr hvert år, og det vil tilsvare en større og større prosentandel av dyrene som er igjen hvert år.
I den eksponentielle modellen avtar bestanden med 5% av antall dyr som er igjen hvert år. Det første året tilsvarer det 600 dyr, men de neste årene vil bestanden minke med færre og færre dyr, fordi 5% av en stadig minkende bestand, tilsvarer et mindre og mindre antall dyr.
Det vil si at det vil være færrest dyr igjen om 10 år ifølge den lineære modellen.
DEL EN
Oppgave 1
a)
b)
Tegner linja y=10 og bruker Skjæring mellom to objekt for å finne punkt B=(5,35, 10) og C=(11,55, 10), se figur.
5,35 måneder etter 1. januar tilsvarer litt ut i juni måned. 11,55 måneder etter 1. januar tilsvarer midten av desember (husk at x=0 den 1.januar, x=1 den 1. februar osv.). Det vil si at det varte i $11,55-5,35=6,2$ måneder.
Det var mer enn 10 millioner kvadratkilometer dekket av havis fra litt ut i juni til midten av desember, i 6,2 måneder.
c)
1. mars tilsvarer x=2 (2 måneder etter 1. januar). 1. september tilsvarer x= 8 (8 måneder etter 1. januar).
Tegnet punktene $D=(2,A(2))$ og $E=(8,A(8))$. Brukte knappen "linje" til å tegne en linje i som går gjennom punkt D og E. Brukte knappen "Stigning" til å finne stigningen til linjen i. Stigningen a=2,28.
Det betyr at den gjennomsnittlige økningen i antall kvadratkilometer dekket av havvis fra 1. mars til 1. september var 2,28 millioner kvadratkilometer per måned.
d)
Lagde punktet $F=(5,A(5))$. Brukte knappen "Tangent" til å lage en tangent til funksjonen A(x) i punktet F. Brukte knappen "Stigning" til å finne stigningen til tangenten. Stigningen a=3.
Den momentane vekstfarten når x=5 var 3 millioner kvadratkilometer per måned. Det vil si at havisen vokste med en fart på 3 millioner kvadratkilometer per måned den 1. juni.
Oppgave 2
a)
Setter om et funksjonsuttrykk f(x) for verdien av bilen om x år. En årlig nedgang i verdien på 12% tilsvarer en årlig vekstfaktor på 0,88.
$f(x)=300000 \cdot 0,88^x$
Om 5 år er bilen verdt:
$f(5)=300000 \cdot 0,88^5 \approx 158320 kr$
b)
For 5 år siden var bilen verdt:
$f(-5)=300000 \cdot 0,88^{-5} = 568470 kr$