Vektorprodukt
Vektorproduktet er en operasjon mellom to 3-dimensjonale vektorer som har nyttige anvendelser i blant annet areal- og volumberegninger og når vi skal finne normalvektorer til flater og plan i rommet. Merk at vektorproduktet slik det er definert ikke gir mening for annet enn 3- og 7-dimensjonale vektorer, der vi kun har fokus på det 3-dimensjonale tilfellet.
Definisjon av vektorprodukt (kryssprodukt)
Vi bruker notasjonen <tex>\times</tex> for vektorprodukt. Lar vi <tex>\vec{v_1}=(x_1,y_1,z_1)</tex> og <tex>\vec{v_2}=(x_2,y_2,z_2)</tex> er
- <tex>\vec{v_1}\times \vec{v_2}=\left ( y_1z_2-y_2z_1,-(x_1z_2-x_2z_1),x_1y_2-x_2y_1 \right )</tex>
Definisjonen kan også skrives som en determinant som gjør den lettere å huske,
- <tex> \vec{v_1}\times\vec{v_2} = \left| \begin{array}{ccc}i & j & k \\x_1 & y_1 & z_1 \\x_2 & y_2 & z_2 \end{array} \right |</tex>
Utvikler vi i første rad ser vi at determinanten blir
- <tex>\vec{v_1}\times\vec{v_2}= (y_1z_2-y_2z_1)i-(x_1z_2-x_2z_1)j+(x_1y_2-x_2y_1)k</tex>.
Her tolker vi <tex>i,j,k</tex> som enhetsvektorer langs x-,y- og z-aksen, og da ser vi at dette er i overensstemmelse med den første definisjonen.
Merk at kryssproduktet ikke er kommutativt. Bruker vi definisjonen ser vi at
- <tex>\vec{v_2}\times \vec{v_1}=-\vec{v_1}\times \vec{v_2}</tex>
Geometrisk tolkning
Vektorproduktet <tex>\vec{v_1}\times \vec{v_2}</tex> er en ny vektor, si <tex>\vec{v_3}</tex>, som står normalt (vinkelrett) på både <tex>\vec{v_1}</tex> og <tex>\vec{v_2}</tex> og har lengde <tex>|\vec{v_1}||\vec{v_2}||\sin(\theta)|</tex>. Retningen til <tex>\vec{v_3}</tex> følger høyrehåndsregelen, dvs. at dersom vi tilpasser et slags koordinatsystem slik at <tex>\vec{v_1}</tex> følger x-aksen i positiv retning og <tex>\vec{v_2}</tex> følger y-aksen i positiv retning, vil <tex>\vec{v_3} </tex> peke i positiv retning langs z-aksen.
Absoluttverdien av vektorproduktet
Absoluttverdien
- <tex>|\vec{v_1}\times \vec{v_2}|</tex>
er arealet til parallellogrammet utspent av vektorene. Bruker vi definisjonen kan vi vise at
- <tex>|\vec{v_1}\times \vec{v_2}|=|\vec{v_1}||\vec{v_2}|\sin(\theta)</tex>
der <tex>\theta</tex> er vinkelen mellom vektorene. Da ser vi geometrisk at dette er likt arealet av parallellogrammet. For spesialtilfellet <tex>\theta=\frac{\pi}{2}</tex> vil vektorene utspenne et rektangel, og da ser vi enkelt at arealtolkningen stemmer siden <tex>\sin(\frac{\pi}{2}=1</tex>.