Sinusfunksjonen
$f(x) = A sin(kx+c) + d$
Hvordan kan vi knytte dette funksjonsuttrykket sammen med en graf som ser slik ut?:
Likevektslinje
Likevektslinjen er den linjen den periodiske funksjonen svinger rundt. Utslaget er like stort til begge sider (opp og ned).
Likevektslinje: y = d
Vi finner uttrykket for d ved å regne ut: $d= \frac{f_{maks}+ f_{min}}{2}= \frac{5+(-1)}{2} = 2$
Amplitude: A
Amlituden er det største utslaget på grafen. Når du skrur på volumet på stereoen din bestemmer du amplituden. Dersom du ønsker høy lyd er aplituden stor..
Amlituden er utslaget fra likevektslinja, og er alltid positivt.
Amplitude: $\quad f_{max}- d = 5-2 = 3 $
Man må merkeseg at aplituden er en absoluttverdi, den er altid positiv fordi den måler avstanden fra likevektslinje til maksimalt (eller minimalt) utslag.
Amplituden er lengden av den blå linjen. Den røde linjen er likeveksjinjen.
Da har vi etablert at modellen ser slik ut: $f(x)=3 sin(kx+c) +2$
Vi mangker fortsatt k og c.
Periode
Peiode P: $P= \frac {2 \pi}{k} , \quad \quad kp= 2\pi, \quad \quad k= \frac{2\pi}{p}$
k er antallet ganger funksjonen repeterer seg selv i intevallet $2 \pi$. Fra figuren ser man at k = 2 og at lengden på peroden blir $\pi$
Faseforskyvning
Faseforskyvning: $\quad - \frac{c}{k}$
Man observere at faseforskyvningen ser ut til å være ca. - en fjerdedels pi (litt på øyemål). V tar utgangspunkt i der likevektslinjen krysser y aksen og beveger oss til den delen av grafen som vokser, fordi sinusfunksjonen vokser for vinkler i første kvadrant. Se fuguren over.
Da blir c: $\frac{c}{k} = \frac{\pi}{4} \Rightarrow c= 2 \cdot \frac {\pi}{4} = \frac {\pi}{2}$
Dersom $c<0$ forskyves grafen mot høyre.
Dersom $c> 0$ forskyves grafen mot venstre.
Funksjonsutrykket ser slik ut: $f(x)= 3sin(2x+ \frac{\pi}{2}) +2$
Litt mere om faseforskyvning