R2 2011 vår LØSNING

Fra Matematikk.net
Sideversjon per 2. jan. 2012 kl. 15:34 av Plutarco (diskusjon | bidrag) (Ny side: ''' == 1a) == ''' '''1)''' <tex>f(x)=2\sin(2x)\Rightarrow f'(x)=4\cos(2x)</tex> '''2)''' <tex>g(x)=x^2\cos(2x)\Rightarrow g'(x)=(x^2)'\cos(2x)+x^2(\cos(2x))'=2x\cos(2x)-2x^2\sin(2x)</te...)
(diff) ← Eldre sideversjon | Nåværende sideversjon (diff) | Nyere sideversjon → (diff)
Hopp til: navigasjon, søk

1a)


1) <tex>f(x)=2\sin(2x)\Rightarrow f'(x)=4\cos(2x)</tex>


2) <tex>g(x)=x^2\cos(2x)\Rightarrow g'(x)=(x^2)'\cos(2x)+x^2(\cos(2x))'=2x\cos(2x)-2x^2\sin(2x)</tex>


3) <tex>h(x)=\frac12 \sqrt{x^2-4x}\Rightarrow h'(x)=\frac12 \frac{x-2}{\sqrt{x^2-4x}}</tex>


1b)


1) Delvis integrasjon gir at <tex>\int xe^x\,dx=[xe^x]-\int e^x\,dx=(x-1)e^x+C</tex>


2) <tex>\int\frac{5x+3}{x^2-9}\,dx=\int\frac{5x+3}{(x-3)(x+3)}\,dx</tex>. Delbrøksoppspaltning gir at

<tex>\frac{1}{(x-3)(x+3)}=\frac16(\frac{1}{x-3}-\frac{1}{x+3})</tex>, så <tex>\int\frac{5x+3}{(x-3)(x+3)}\,dx=\int(5x+3)\frac16(\frac{1}{x-3}-\frac{1}{x+3})\,dx=\frac16 \left(\int \frac{5x+3}{x-3}\,dx-\int \frac{5x+3}{x+3}\,dx\right )</tex>


<tex>\int \frac{5x+3}{x-3}\,dx=\int \frac{5(x-3)+18}{x-3}\,dx=5\int dx+18\int \frac{1}{x-3}\,dx=5x+18\ln(|x-3|)+C_1</tex> og


<tex>\int \frac{5x+3}{x+3}\,dx=\int \frac{5(x+3)-12}{x+3}\,dx=5\int dx-12\int \frac{1}{x+3}\,dx=5x-12\ln(|x+3|)+C_2</tex>, så


<tex>\frac16 \left(\int \frac{5x+3}{x-3}\,dx-\int \frac{5x+3}{x+3}\,dx\right ) =3\ln(|x-3|)+2\ln(|x+3|)+C</tex>


1c)

Sirkelen på figuren er beskrevet ved ligningen <tex>x^2+y^2=1</tex>, så høyden opp til halvsirkelen i øvre halvplan som funksjon av <tex>x</tex>, er <tex>y(x)=\sqrt{1-x^2}</tex>. Arealet av halvsirkelen i øvre halvplan er derfor <tex>\int_{-1}^1 y(x)\,dx=\int_{-1}^1\sqrt{1-x^2}\,dx=\frac12\pi (1)^2=\frac12 \pi</tex>

1d)


1) Dersom én av vektorene har lengde <tex>0</tex> vil prikkproduktet være <tex>0</tex>. Anta videre at begge vektorene har lengde ulik <tex>0</tex>. Siden prikkproduktet er <tex>0</tex>, må vektorene <tex>\vec{a}</tex> og <tex>\vec{b}</tex> stå normalt på hverandre.


2) Dersom én av vektorene har lengde <tex>0</tex> vil kryssproduktet være <tex>0</tex>. Anta videre at begge vektorene har lengde ulik <tex>0</tex>. Siden kryssproduktet er <tex>0</tex>, må vektorene <tex>\vec{a}</tex> og <tex>\vec{b}</tex> ligge parallelt.