R1 2022 Vår LK20 LØSNING
Diskusjon av oppgaven på matteprat
Videoløsning del 1 av Lektor Lainz
Løsning som pdf av Farhan Omar
DEL 1
Oppgave 1
a)
$f(x)=x^3+ln\,x$
$f'(x)=3x^2+\frac{1}{x}$
b)
$g(x)=x\cdot e^{2x}$
$g'(x)=1\cdot e^{2x}+x\cdot 2\cdot e^{2x}=e^{2x}(1+2x)$
Oppgave 2
$e^{2x}-e^x=2$
$(e^x)^2-e^x-2=0$
Setter $u=e^x$
$u^2-u-2=0$
$(u+1)(u-2)=0$
$u=-1 \vee u=2$
$e^x=-1 \vee e^x=2$
Forkaster det negative svaret fordi ln(-1) ikke er definert.
$ln(e^x)=ln(2)$
$x=ln(2)$
Oppgave 3
$\lim\limits_{x \to 3} \frac{x-3}{x^2+x-12}$
$=\lim\limits_{x \to 3} \frac{x-3}{(x-3)(x+4)}$
$=\lim\limits_{x \to 3} \frac{1}{x+4}$
$=\frac{1}{7}$
Oppgave 4
a)
$\overrightarrow{AC} = [t-1, 4-2] = [t-1, 2]$
$\overrightarrow{AB} = [-1-1, 5-2] = [-2, 3]$
Dersom vinkelen mellom to vektorer er 90 grader, er skalarproduktet av disse to vektorene lik 0.
$\overrightarrow{AC}\cdot\overrightarrow{AB} = 0$
$[t-1,2]\cdot[-2,3]=0$
$(t-1)\cdot(-2)+2\cdot 3=0$
$-2t+2+6=0$
$-2t=-8$
$t=4$
Anbefaler å tegne et lite koordinatsystem for å se at det stemmer.
b)
Dersom A, B og C skal ligge på en rett linje, er $\overrightarrow{AC}$ og $\overrightarrow{AB}$ parallelle. Da har vi at:
$\overrightarrow{AC} = k\cdot\overrightarrow{AB}$
$[t-1,2]=k\cdot[-2,3]$
Dette gir oss to likninger:
$I \quad t-1=-2k$
$II \quad 2=3k \quad \Rightarrow \quad k=\frac{2}{3}$
Setter inn k=2/3 inn i likning I:
$I \quad t-1=-2\cdot\frac{2}{3}$
$t=\frac{-4}{3}+1$
$t=-\frac{1}{3}$
Oppgave 5
DEL 2
Oppgave 4
Bruker CAS i Geogebra.
Det tar ca. 7,8 timer før temperaturen i kaffen er mindre enn 40 grader Celsius.