Statistikkutkast
Utvalg
Dersom man produserer 1000 enheter av noe per dag og ønsker å sjekke kvaliteten kan det være for tidkrevende å sjekke alle 1000. Vi han ta et tilfeldig utvalg, en stikkprøve, og ved å få informasjon om utvalget kan vi forhåpentligvis si litt om hele produksjonen. Når man analyser tallmaterialet kan man selvsagt gjøre det for hånd, men det er tidkrevende og digitale hjelpemidler er gode på dette. Fordelen med å bruke regneark eller programmering er at du trolig vil treffe disse igjen etter vgs. Du kan også bruke Geogebra, men det er ikke sikkert du støter på dette programmet etter vgs.
Nedenfor viser regnearket 20 tilfeldige verdier fra en produksjon på 1000. Vi ønsker å bruke de 20 enhetene til å si noe om hele dagsproduksjonen på 1000. 1000 er da populasjonen og 20 er utvalget ("sampel" på engelsk)
Her har vi tatt et utvalg på 20 fra en produksjonsserie på 1000. Vi har målt høyden på det enkelte produkt.
Begreper i statistikk
Populasjon - det totale antall individer eller objekter et sted eller over en tidsperiode. Eks: Alle harene i Nordmarka. Alle eplene produsert i Hardanger i 2023.
utvalg En del (liten) av populasjonen-
Målet er å kunne si noe fornuftig / få kunnskap om populasjoner (store mengder) på grunnlag av små mengder - utvalg.
forventningsrettet estimator
Kurtose. Normalfordelingen har kurtose 3. Høyere tall indikerer større forekomst av ekstreme verdier og motsatt.
Skjevhet. Dersom skjevheten er null er fordelingen symmetrisk
[ https://matematikk.net/side/Spredningsm%C3%A5l | Spredningsmål ]
Normalfordeling
Funksjonen har en klokkeformet graf:
der
Figuren illustrere hvordan standardavviket påvirker klokkeformen. Grafene har standardavvik fra 3 til 2. Desto mindre standardavviket blir, desto raskere nærmer grafen seg x aksen, på begge sider av forventningsverdien.
Figuren viser en normalfordeling med forventning 6 og standardavvik 2. Arealet under grafen fra x= 4 til x = 8 tilsvarer ett standardavvik og er ca 68% av forekomstene. To standardavvik er CA 95% og tre ca 100% ( ca 0,2% > 3 standardavvik).
Litt mer matematisk:
Standardnormalfordelingen
En stokastisk variabel X med forventning
Z er normalfordelt med forventning = og standardavvik 1. Z er standardnormalfordelt.
To stokastisk variable
Vi har X med forventning
Konfidensintervall
Et intervall der vi tror en ukjent parameter ligger, kalles et konfidensintervall. Et konfidensintervall har et konfidensnivå som sier noe om hvor sannsynlig det er å finne den ukjente parameteren i intervallet. Det er vanlig å bruke et konfidensnivå på 95%, altså er det da 95% sannsynlig at parameteren man jakter på ligger i intervallet. Det er 5% sannsynlig at den ikke gjør det.
Case Blomsterpinner
En blomsterpinne er en tynn pinne som man stikker ned i blomsterpotten for å støtte planten under vekst. Vi driver en bedrift og vi lager 20595 blomsterpinner om dagen. Maskinene er stilt inn sånn at pinnene skal bli 50 cm lange, men utstyret er gammelt så vi ser jo at det ikke er alle pinner som er like lange. Hvor lange er de egentlig? Og hvor mye varierer de i lengde?
Vi lager oss en populasjon i Excel. Da har vi styring på både forventningsverdi og standardavvik. Vi simulerer 20 595 pinner, setter forventningsverdien til 50 og standardavviket til 3:
Vi ser fra figuren at søylene som angir sannsynlighetstettheten av antallet simuleringer danner en klokkeform som kan minne om en kurve lik dem over. Populasjonen har en forventning
I virkeligheten vet ikke vi noe om dette. Vi håper og tror at pinnene er 50 cm lange fordi maskinene er innstilt slik. Det tar for lang tid å måle hver enkelt pinne i hele produksjonen. Vi bestemmer oss for å ta ut og måle tre serier fra produksjonen hver dag i 16 dager. Etter dagens produksjon tar vi først ut en gruppe på 10 pinner, så en gruppe på 100 og til slutt en gruppe på 1000 pinner, alle helt tilfeldig.
Simuleringen tilsvarer en produksjon på 20595 pinner. Vi simulerer på nytt hver dag i 16 dager. Hvor mye betyr utvalgets størrelse på estimatene, og hva er egentlig stdavP og stadvS