S1 2019 vår LØSNING
Diskusjon av denne oppgaven på matteprat
Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas
DEL EN
Oppgave 1
a)
$3^{x-5} = 81 \\ 3^{x-5} = 3^4 \\ x-5 = 4 \\ x=9 $
b)
$x^2-7x+10 =0$
Faktoriserer
$x^2-7x+10 = (x-2)(x-5)$
Finner nullpunktene:
$(x-2)(x-5)=0 \\ x=2 \vee x = 5$
Kan også bruke abc - formelen for faktorisering.
c)
$lg(x+3) - lgx = 1 \quad x>0 \\ lg ( \frac{x+3}{x} )= 1 \\ 10^{lg(\frac {x+3}{x} )}= 10^1 \\ \frac{x+3}{x} = 10 \\ x+3 = 10x \\ 9x = 3 \\ x = \frac{1}{3}$
Oppgave 2
a)
$ \frac{16^2 \cdot 27^3}{72^2 \cdot 12} \\= \frac{(2^4)^2 \cdot (3^3)^3}{(2^3\cdot 3^2)^2 \cdot 2^2 \cdot 3 } \\ = \frac{2^8 \cdot 3^9}{2^6 \cdot 3^4 \cdot 2^2 \cdot 3} \\ = \frac{2^8 \cdot 3^9}{2^8 \cdot 3^5} \\ = 2^{8-8} \cdot 3^{9-5} = 2^0 \cdot 3^4 = 3^4 = 81$
b)
$ \frac{x-2}{x-1} - \frac{x}{x+1} - \frac{2x}{x^2-1} \\ =\frac{(x-2) \cdot \color{red}{ (x+1)}}{(x-1) \cdot \color{red}{ (x+1)}} - \frac{x \cdot \color{red}{ (x-1)}}{(x+1) \cdot \color{red}{ (x-1)}} - \frac{2x}{(x+1)(x-1)} \\= \frac{(x^2+x-2x-2) - (x^2-x) - 2x}{(x-1)(x+1)} \\= \frac{x^2+x-2x-2-x^2+x-2x}{(x-1)(x+1)} \\ = \frac{-2x-2}{(x-1)(x+1)} \\ = \frac{-2(x+1)}{(x-1)(x+1)} \\ = - \frac{2}{x-1}$
c)
$lg( \frac{2}{x^2}) + lg (2x^2) + lg(x) - lg (4x) \\ =( lg(2) - lg(x^2)) + ( lg (2) + lg(x^2)) + lg(x) - (lg(4) + lg(x)) \\= lg(2) - 2lg(x) +lg(2) + 2lg(x) + lg(x)- lg(2^2) - lg(x) \\ = 2 lg(2) + lg(x) -2lg(2) - lg(x) \\ = 0 $
Oppgave 3
<math> \left[ \begin{align*} x^2+2y =13x \\ 3x - y =-5 \end{align*}\right] </math>
Løser andre likning og setter inn i den første.
$ y = 3x + 5$
Vi setter inn for y i den første likningen:
$x^2 + 2 (3x + 5) = 13x \\ x^2 + 6x+10 = 13x \\x^2 -7x + 10 = 0$
Fra oppgave 1b) har vi at $x_1=2$ og $x_2=5$
Fra andre likning har vi:
$y_1=3\cdot2+5=11$
$y_2=3\cdot 5+5=20$
Løsning: $x_1=2$, $y_1=11$ og $x_2=5$, $y_2=20$
Oppgave 4
a)
Pris brus = x og pris pølse = y.
<math> \left[ \begin{align*} 6x + 4y =170 \\ 5x + 10y =275 \end{align*}\right] </math>
b)
Løser likning II med hensyn på x:
$5x=275-10y \\ x = 55 - 2y $
setter så uttrykket for x inn i likning I:
$6( 55 - 2y) +4y =170 \\ 330 -12y + 4y = 170 \\ -8y = -160 \\ y = 20$
Setter inn y=20 i likning II:
$x= 55-2\cdot 20=55-40=15$
En brus koster 15 kroner og en pølse koster 20 kroner.
Oppgave 5
a)
$ f(x) = x^3+3x \\ f ' (x) = 3x^2+3 \\ f '(1) = 3 \cdot 1 + 3 = 6 $
Når x =1 har funksjonen en momentan vekstfart på 6.
b)
Den deriverte er positiv for alle verdier av x, derfor er funksjonen voksende og har kun positive tangenter.
c)
$ f ' (x) = 15 \\ 3x^2+3 = 15 \\ 3x^2 = 12 \\ x^2 = 4 \\ x= \pm 2 $
Oppgave 6
a)
$\binom{10}{3} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 10 \cdot 3 \cdot 4 = 120 $
120 ulike grupper på tre deltakere kan komme til finalen.
b)
Vi har flere kvinner enn menn en gruppe på tre, dersom vi har to eller tre kvinner.
P(to eller tre kvinner) = $\frac{\binom{5}{2} \binom{5}{1}}{ \binom{10}{3}} + \frac{\binom{5}{3} \binom{5}{0}}{ \binom{10}{3}} = \frac{10 \cdot 5}{120} + \frac{10 \cdot 1 }{120} = \frac{60}{120} = \frac{1}{2}$
60 av de 120 gruppene, det vil si halvparten, inneholder flere kvinner enn menn.
Oppgave 7
Oppgave 8
a)
Omkrets: $ O = 4y +8x = 12 \\ 4y = 12 - 8x \\ y= 3-2x$
Areal: $A= y^2+2x^2 \\ A(x)= (3-2x)^2+2x^2 \\ A(x)= 9-12x+4x^2+2x^2 \\ A(x)= 6x^2-12x +9$
b)
$A' (x)= 12x -12 \\ A' (x)=0 \\ 12x-12 =0 \\ x=1 \\ $
Innsatt for y: $y = 3 - 2x \\ y = 3 - 2 \cdot 1 \\ y=1$
Det minste arealet får man når både x = 1 og y = 1.