R1 eksempeloppgave 2015 vår LØSNING
Fra Matematikk.net
Oppgave 1
a)
$f(t)=0.02t^3+0.6t^2+4.1\\f'(t)=0.06t^2+1.2t$
b)
$g(x)=x^2\cdot \e^{2x}\\g'(x)=2x\cdot \e^{2x}+x^2\cdot \2e^{2x}=2x\cdot \e^{2x}\cdot \(1+x)$
Oppgave 1
$f(t)=0.02t^3+0.6t^2+4.1\\f'(t)=0.06t^2+1.2t$
$g(x)=x^2\cdot \e^{2x}\\g'(x)=2x\cdot \e^{2x}+x^2\cdot \2e^{2x}=2x\cdot \e^{2x}\cdot \(1+x)$