2P 2014 høst LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

DEL 1

Oppgave 1

$ \frac{0,0003 \cdot 500000000}{0,002}= \frac{3 \cdot 10^{-4} \cdot 5 \cdot 10^{8}}{2 \cdot 10^{-3}} = \frac{3 \cdot 5}{2} \cdot 10^{-4+8-(-3)} = 7,5 \cdot 10^7$

Oppgave 2

$x \cdot 1,25 = 250 \\ x = \frac{250}{1,25} \\ x =200$

Varen kostet 200 kroner før den ble satt opp.

Oppgave 3

300m = 30000cm

Vi vet at 500 ark er 6 cm. Dersom vi deler 30000 på 6 finner vi antall bunker med 500 ark. Så ganger vi med 500 for å finne antall ark.

$ \frac{30000}{6} \cdot 500 = \frac{3 \cdot 10^4 \cdot 5 \cdot 10^2}{6 \cdot 10^0 } = 2,5 \cdot 10^6$

I en 300 meter høy bunke med ark vil det være 2 500 000 ark

Oppgave 4

$\frac{2^3 \cdot 2^0}{2} - 8 \cdot 2^{-2} = \\ 2^{3+0-1} - 2^3 \cdot 2^{-2} =\\ 4 - 2 = 2$

Oppgave 5

a)

Det er 15 år mellom 2014 0t 2029. I denne perioden minker elevtallet med 350 - 275 = 75 elever, dvs. 5 elever per år. En lineær modell blir da:

y = -5x + 350 , der x er antall år etter 2014. y er antall elever et gitt år.

b)

Elever i 2024, dvs. x= 10:

$ y = -5 \cdot 10 + 350 = 300$

Etter modellen i a vil det være ca. 300 elever.

c)

I 2014 er elevtallet 200.

Det forventes en årlig vekst i elevtallet på 3%, derfor vekstfaktor 1,03.

x er antall år etter 2014.

Oppgave 6

a)

$L(3) = 1500 \cdot 1,08^3$

1500 er startverdi.

1,08 er vekstfaktor for 8%.

3 er perioder fram i tid.

b)

$L(juli, august, september, oktober) = 1500 \cdot 1,08^{-2}+1500 \cdot 1,08^{-1} + 1500 \cdot 1,08^0 + 1500 \cdot 1,08^1$

Oppgave 7

a)

y aksen viser frekvens delt på klassebredde. 1,5. Klassebredden er 50 - 30 = 20. Vi får da:

$ \frac{x}{20} =1,5 \\ x = 1,5 \cdot 20 \\ x=30$

b)

Ved å bruke samme metode som i a, på de tre andre klassene finner man at det var 100 personer på kinoen. 10 av disse er mellom 0-10 år. Prosent er del av hundre, dvs. 10%.

c)

Oppgave 8

Oppgave 9

a)

Det spilles 16 kamper: Det skåres i gjennomsnitt:

$\frac{0\cdot 2 +1 \cdot 6+ 2 \cdot 3 + 3\cdot 4 + 4 \cdot 1 }{16} = \frac{28}{16} = 1,75 $

Oda skårer i gjennomsnitt 1,75 mål per kamp.

b)

c)

d)

DEL 2

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6

Oppgave 7