S1 2013 høst LØSNING
DEL EN
Oppgave 1
$f(x)= 3x^2+3x+1 \qquad D_f = \R \\f'(x)= 6x-3 \\f´(2)= 6 \cdot 2 -3 = 9$
Oppgave 2
a)
$x(x+5)-10 =4 \\ x^2+5x-14=0 \\ x= \frac{-5\pm \sqrt{25+56}}{2} \\x= -7 \vee x=2$
b)
$10^{3x} -100000 =0 \\ 10^{3x} = 10^5 \\ 3x=5 \\ x=\frac 53$
Oppgave 3
<math> \left[ \begin{align*} y = x^2+2\\ y+x^2=4 \end{align*}\right] </math>
<math>\left[ \begin{align*} x^2+2+x^2-4=0 \\ 2(x^2-1) =0 \\ x=-1 \vee x=1\end{align*}\right] </math>
$x=-1 \Rightarrow y=3 \\ x=1 \Rightarrow y=3 \\ (-1,3 ) \wedge (1,3)$
Oppgave 4
a)
$v=v_0+at \\t = \frac{v-v_0}{a}$
b)
$t = \frac{v-v_0}{a} \\ t = \frac{25-1}{3}=8 $
Oppgave 5
a)
$ \frac{9^2a^2b^3}{(3ab^2)^2} \\ =\frac{3^4a^2b^3}{3^2a^2b^6} \\ = 3^{4-2} \cdot a^{2-2} \cdot b^{3-6} \\ = 3^2b^{-3} \\ = \frac{9}{b^3} $
b)
$\lg (\frac{a^2}{b^2}) + \lg( \frac {b^2}{a}) + lg (a+b) \\ =\lg a^2 - \lg b^2 + \lg b^2 - \lg a + \lg (a+b) \\= 2\lg a - \lg a + \lg(a+b) \\ = \lg a + \lg (a+b) \\ =lg (a(a+b)) \\ =\lg (a^2+ab)$
Oppgave 6
$x^2+2x \ge x-6 \\ x^2+x-6 \ge 0 \\ x= \frac{1 \pm \sqrt{25}}{2} \\ (x-2)(x+3)\ge 0$
Oppgave 7
<math> \left[ \begin{align*} 21+x = y\\ y+2x = 126 \end{align*}\right] </math>
$ 21+x+2x= 126 \\ 3x= 105 \\ x= 35 \\ y= x+21 = 56 \\ x= 35 \wedge y= 56 $
Oppgave 8
$ f(x)=x^3-6x^2 \qquad D_f = \R$
a)
Nullpunkt:
$f(x)= 0 \\ 2x^3 - 6x^2 =0 \\ 2x^2(x-3) =0 \\ x=0 \vee x= 3 \\ f(0) =0 \wedge f(3)= 0$
Nullpunkt i (0, 0) og (3, 0)
b)
Ekstremalpunkt:
$f´(x) = 6x^2-12x \\ f´(x)=0 \\ 6x(x-2)=0 \\ x= 0 \vee x=2 \\ f(0) = 0 \wedge f(2)=-8$
c)
Oppgave 9
$f(0)=-2 \Rightarrow b=2 \\ f(-1) =0 \Rightarrow a=2 $
Vertikal asymptote: $x=1 \Rightarrow c=1$
Funksjonen blir da:
$f(x)= \frac{ax+b}{cx -1} = \frac{2x+2}{x-1}$