1T 2013 høst LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

Oppgaven som pdf

Diskusjon av denne oppgaven på matteprat

DEL EN

Oppgave 1:

$7,5 \cdot 10^{12} \cdot 4,0 \cdot 10^{-4} = 30 \cdot 10^{12+(-4)} = 30 \cdot 10^8 = 3,0 \cdot 10^9$

Oppgave 2:

a)

Blå bukser Svarte bukser Total
Bukser som passer $3$ $3 $ $6$
Bukser som ikke passer $1$ $3$ $4$
Total $4$ $6$ $10$

b)

P (buksa passer) =$\frac {6}{10}$ = 60%

Det er 60% sjanse for at buksa passer.

c)

P ( blå bukse, gitt at den passer) = $\frac 36 = \frac 12 = $ 50%

Det er 50% sjanse for at buksa er blå, når vi vet at hun har trukket en bukse som passer.

Oppgave 3:

$\frac {2x^2-18}{x^2+6x+9} = \frac {2(x+3)(x-3)}{(x+3)(x+3)} = \frac{2(x-3)}{x+3}$

Oppgave 4:

$ \frac{\sqrt 2 \cdot 2^0 \cdot 2^{-1}}{8^{\frac12} \cdot 2^{-2}} = \frac{2^{\frac 12} \cdot 2^{-1}}{2^{\frac 32}\cdot 2^{-2}} = \\ 2^{\frac12 -1-\frac32 + 2} = 2^0=1 $

Oppgave 5:

$2lgx-8=5lgx+1 \\ -3lgx =9 \\ lgx =-3 \\ x = 10^{-3} = 0,001$

Oppgave 6:

Rett linje: y = ax + b

stigningstal: $a = \frac{\Delta y}{\Delta x} = \frac{5-2}{3-1} = \frac 32$

Bruker dette sammen med første punkt og får:

$y=ax + b \\ 2= \frac 32 \cdot 1 + b \\ b= \frac 12$

Dvs:

$y = \frac 32x + \frac 12$

Oppgave 7:

Oppgave 8:

a)

$f(x) = x^3-3x^2 \quad D_f = \R \\ f´(x) = 3x^2-6x \\ f´(x)=0 \\ x(3x-6)= 0 \\ x= 0 \vee x = 2$

Setter 0 og 2 inn i funksjonsyttrykket for å finne ekstremalpunkt:

$f(0)= 2 \wedge f(2)= -4 $

Vi har ekstremalpunktene ( 0, 0 ) og ( 2, -4 ).

f ´ ( -1) er positiv.

f ´( 1) er negativ og

f ´( 3) = er positiv. Det betyr at (0, 0) er et maksimumspunkt og ( 2, -4) er et minimumspunkt.

b)

c)

Oppgave 9:


Cosinus til en vinkel i en rettvinklet trekant er definert som hosliggende katet delt på hypotenusen. $ cos C = \frac 37$

Oppgave 10:


Lengden av hypotenusen i den rettvinklede trekanten til venstre er $ \sqrt {4^2 + 1^2} = \sqrt {17}$ . omkretsen blir derved 10 + 5 + 6 + $ \sqrt{17} = 21 + \sqrt{17}$ .

DEL TO:

Oppgave 1

a)

b)


c)

Fiskebestanden var minst sommeren 2008, da var den i overkant av 51 tonn.

d)

Koordinatene til skjæringspunktet er (5,91 , 200). Det betyr at bestanden var 200 tonn sent på høsten i 2005. Bestanden var på vei ned.

Endring fra jan. 2003 til jan. 2007 var 111 tonn - 435 tonn = - 324 tonn. Perioden var fire år. Den gjennomsnittlige årlige endringen blir da: -324 tonn : 4år = - 81 tonn/år.

I denne perioden minket bestanden med 81 tonn i året, i gjennomsnitt.

Oppgave 2

a)

$f(x) = 20000 \cdot 0,92^x \\ f(1)= 20000 \cdot 0,92^1 = 18400 \\ f(10)=20000 \cdot 0,92^{10} = 8687,8$

Etter ett døgn er det 18400 liter igjen, og etter ti døgn er det 8687,8 liter igjen i dammen.

b)

$f(x)= 5000 \\ 20000 \cdot 0,92^x \\ 0,92^x = \frac 14 \\ x\cdot lg0,92 = lg0,25 \\ x= 16,6$

Det vil ta ça. 16,6 døgn før det er 5000 liter igjen i dammen.

Oppgave 3

Oppgave 4

Hver av dem har så mange mynter:

Pål = x

Espen = 2x

Per = 6x

til sammen har de 198 mynter.

6x + 2x + x = 198

9x = 198

x = 22

Pål har 22 mynter, Espen har 44 mynter og Per har 132 mynter.

Oppgave 5

Oppgave 6

Oppgave 7