R1 2011 høst LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

DEL EN

Oppgave 1:

a

1)
<math>f(t)= 0,02t^3 + 0,6t^2 + 4,1 \\ f'(t)= 0,06t^2 + 1,2t </math>

2)
<math>g(x)= \sqrt{x^2-1} \\g'(x)= \frac {1}{2\sqrt{x^2-1}} \cdot 2x = \frac {x}{\sqrt{x^2-1}}</math>
3)
<math>h(x) = x^2 \cdot e^{2x} \\h'(x) = 2x \cdot e^{2x} + x^2 \cdot 2 \cdot e^{2x} = 2xe^{2x}(1+x)</math>

b

1)

$P(2) =2^3-4 \cdot 2^2 - 4 \cdot 2 + 16 = 8-16-8+16=0 $

Siden P(2) = 0 er x=2 et nullpunkt.

2)

3)

c

$ y = a - b^x \\ b^x = a-y \\ x = \frac{lg(a-y}{lg b}$

y må være mindre enn a fordi man ikke kan ta logaritmen til et negativt tall.

d

1)

2)

3)

e)

1)

f minker i områdene minus uendelig til -1 og fra 3 til uendelig

f vokser fra -1 til 3.

2)

f har to ekstremalpunkt, et minimumspunkt for x = -1 og et maksimumspunkt for x = 3. Grafen har et vendepunkt for x=1. For verdier mindre enn 1 vender grafen sin hule side opp, og for verdier større enn 1 vender den sin hule side ned.

3)

f)

$f(x)= x^2+1 \\ f ´(x) = \lim_{\Delta x \to 0} \frac {f(x+ \Delta x)- f(x)}{\Delta x} \\ = \lim_{\Delta x \to 0} \frac {((x+ \Delta x)^2 +1)- (x^2+1)}{\Delta x} \\=\lim_{\Delta x \to 0} \frac {x^2 + 2x \Delta x + (\Delta x)^2 + 1 - x^2-1}{\Delta x}\\ = \lim_{\Delta x \to 0} \frac {\Delta x(2x+ \Delta x)}{\Delta x} \\ =\lim_{\Delta x \to 0} 2x +\Delta x = 2x$

g)

1)

Vinkel ADB er en pereferivinkel og skjærer over samme bue som AOB. Vinkel ADB er defor $30^{\circ}$.

2)

Vinkel DBE er en pereferivinkel som spenner over samme bue spm DOE. Vinkel DBE er derfor $10^{\circ}$ .

3)

Vinkelsummen i en trekant er 180 grader. I trekanten BCD er vinkel DBC 10 grader. Vinkel BDC er 180 - 30 = 150 grader. Vinkel ACB må da vare lik 20 grader.

DEL TO

Oppgave 2:

a)

b)

c)

d)

e)

f)

Oppgave 3:

a)

1)

2)

b)

Oppgave 4:

a)

b)

c)

d)

Oppgave 5:

a)

b)

c)

Oppgave 6:

a)

b)