R1 2011 vår LØSNING
DEL 1
Oppgave 1
a)
<tex>O(x)= \frac{500}{x} + 8x^2 \\ O(x) = 500x^{-1} + 8x^2 \\ O'(x) = -500x^{-2}+ 16x = \frac{-500}{x^2} + 16x = \frac{-500 +16x^3}{x^2}</tex>
b)
1)
<tex>f(x)= 3ln(2x) \\ f'(x) = 3 \cdot \frac{1}{(2x)}\cdot 2 = \frac {6}{2x} = \frac 3x</tex>
2)
<tex>g(x) = 3x \cdot e^{x^2} \\ g'(x) = 3e^{x^2}+3x \cdot 2x \cdot e^{x^2} = (3+6x^2)e^{x^2}</tex>
c)
1)
<tex>f(x)= x^3-3x^2-13x+15 \\ f(1)= 1-3-13+15 = 0 \\ \quad(x^3-3x^2-13x+15):(x-1)= x^2-2x-15 \\-(x^3-x^2) \\ \quad \quad\quad \quad \quad-2x^2-13x \\\quad \quad\quad -(-2x^2+2x)\\\quad \quad\quad \quad\quad \quad\quad \quad \quad \quad-15x+15 \\ \quad \quad \quad\quad \quad \quad\quad\quad -(-15x+15) \\\quad \quad\quad \quad \quad\quad \quad\quad \quad \quad\quad \quad\quad \quad \quad\quad \quad\quad \quad \quad 0 </tex>
Faktoriserer svaret fra divisjonen:
<tex>x= \frac{2 \pm \sqrt{4+60}}{2}= \frac{2 \pm 8}{2}\\ x=-3 \vee x= 5</tex>
<tex>f(x) = (x-1)(x+3)(x-5)</tex>
2)
<tex>f(x)\leq 0</tex>
<tex>x \in < \leftarrow, -3] \cup [1,5]</tex>
d)
f(0) = 300
Ved begynelsen av utbruddet spruter vulkanen ut 300 tonn per time.
f'(10)=0 og f(10)= -10
Funksjonen når et ekstremalpunkt etter 10 timer, siden den deriverte er null. Den dobbelderiverte er negativ, hvilket betyr at den deriverte avtar og grafen vender sin hule side ned. Det betyr at vulkanen når et maksimum i utbruddet etter 10 timer.
e)
<tex>lg(a^2b)+lg(ab^2)+lg(\frac{a}{b^3})= \\ lga^2 + lgb + lga + lgb^2 + lga - lgb^3 = \\ 2lga + lgb + lga + 2lgb + lga - 3lgb = 4 lga</tex>
f)
g)
h)
Oppgave 2
a
Vinkelsummen i en trekant er 180 grader
<tex>90^{\circ}+u+v = 180^{\circ} \Rightarrow u+v= 90^{\circ}</tex>
DC = EC det betyr at trekanten er likebeint. Normalen fra C på DE deler u i to like store vinkler.
Det fører til at vinkel DEC.
<tex>\angle DEC +90^{\circ}+ \frac u2 = 180^{\circ} \Rightarrow \quad \angle DEC= 90^{\circ}-\frac u2 </tex>