Rekker

Fra Matematikk.net
Hopp til:navigasjon, søk


Følger er en oppramsing av tall. Hvert tall kalles et ledd eller element og har nummer i forhold til sin posisjon. Følgen 2, 4, 6, 8 er endelig og består av fire elementer. Element $a_3 = 6$

De naturlige tallene

1, 2, 3, 4 ,5, ......

Rekken blir:

1 + 2 + 3 + 4 + 5 + ............ + n


Leddets verdi er avhengig av posisjon i rekken. Dersom vi ser på ledd nummer fire, så er verdien 4, ledd fem har verdien 5 osv.

Den eksplisitte formelen blir da:

$a_n=n$

På den måten kan vi finne verdien til ledd nr. n.

Dersom vi kjenner verdien og plassen til ett ledd kan vi finne det neste. vi vet at ledd nr. n har verdien n. Siden dette er de naturlige tallene er forskjellen mellom to naboledd lik en.

Den rekkusive formelen blir da:

$a_{n+1} = a_n +1$

Kvadrater

Kvadrattallene er:

1, 4, 9 , 16, 25, ..............

Rekken blir :

1+ 4+9+16+25+ .......

Å finne formelen for leddene her er ikke så lett som for de naturlige tallene, fordi verdien til leddene endrer seg med kvadratet av posisjonen.

Rekken kan skrives slik:

$1^2 + 2^2 +3^2 + 4^2+ ..............+ n^2$

Eksplisit formel blir:

$a_n = n^2$

Rekkusivformel:

$a_{n+1} = ( \sqrt{a_n} +1)^2 = a_n + 2 \sqrt{a_n} +1 = a_n + 2n+1$

Trekanter

Rekken

1 + 3 + 6 + 10 + 15 + 21 +......

Representerer trekanttallene.

Eksplisit formel: $a_n = \frac {n(n+1)}{2}$ og rekursiv formel : $a_{n+1} = a_n + n +1$.

Rektangeler

Vi kan ha mange forskjellige. Her er en:

2 + 6 + 12 + 20 + .....

Det første rektangelet har lengde to og bredde en. Det andre lengde tre og bredde to, osv.

Eksplisit formel:

$a_n = (n+1)n = n^2+n$

Rekkusiv formel:

$a_{n+1} = a_n +2n$

Eifel-tårn??

Aritmetisk progresjon

En aritmetisk følge er en tallfølge, $\{a_i\}_{i\in\mathbb{N}}$ ($\mathbb{N}=\{1,2,3,...\}$), slik at differansen mellom to påfølgende ledd er konstant; <math>a_{i+1}-a_i=d</math>.

Eksempel

Vi kan definere en spesiell aritmetisk følge ved at <math>a_{i+1}-a_i=2</math>. For at denne følgen skal være unikt bestemt må vi definere en startverdi, f.eks. <math>a_1=3</math>. Følgen <math>\{a_i\}_{i\in\mathbb{N}}</math> er nå entydig bestemt siden formlene over gir at <math>a_2-a_1=a_2-3=2</math>. Dette gir at <math>a_2=2+3=5</math>. Videre er <math>a_3-a_2=a_3-5=2</math>, så <math>a_3=2+5=7</math> osv.


Test deg selv

Aritmetisk rekke (sum)

En aritmetisk rekke er summen av leddene <math>a_i</math> i en aritmetisk progresjon <math>\{a_i\}_{i\in\mathbb{N}}</math> med et endelig antall ledd <math>N</math>. Den <math>n</math>-te partialsummen(delsummen) er summen av de <math>n\leq N</math> første leddene i rekken og kan defineres ved at <math>S_n=\sum_{i=1}^{n}a_i</math>. Siden <math>a_{i+1}=d+a_i</math> for aritmetiske følger, kan vi utlede en lukket form for den aritmetiske rekken av <math>n</math> ledd:

<math>S_n=\sum_{i=1}^n a_i=a_1+(a_1+d)+(a_1+2d)+...+(a_1+(n-1)d)=na_1+\sum_{i=1}^n (i-1)d=na_1+d\sum_{i=0}^{n-1} i=na_1+\frac{n(n-1)}{2}d</math>

Merk at formelen kun avhenger av startverdien <math>a_1</math> og den konstante differansen <math>d</math>.

Alternativt kan vi uttrykke den samme aritmetiske rekken ved <math>S_n=\sum_{i=1}^na_i=\frac{a_1+a_n}{2}n</math>. Ideen her er å finne gjennomsnittsverdien av par av ledd: Første og siste ledd har et gjennomsnitt <math>\frac{a_1+a_n}{2}</math>. Andre og nest siste ledd har samme gjennomsnitt osv. Siden summen består av n ledd der hvert ledd har et gjennomsnitt på <math>\frac{a_1+a_n}{2}</math>, blir summen <math>\frac{a_1+a_n}{2}\cdot n</math>.

Eksempel

La oss se på den endelige følgen <math>(a_i=i)_{i\in [1,10]}=\{1,2,\ldots ,10\}</math> Da blir summen <math>S=\sum_{i=1}^{10}i=\frac{1+10}{2}\cdot 10 = 55</math>

Geometrisk rekke

En geometrisk progresjon <math>(a_n)_{n\in\mathbb{N}}</math> er en tallfølge der hvert tall er et konstant multippel av det forrige, dvs <math>\frac{a_{n+1}}{a_n}=k</math>.

Slike tallfølger kan skrives på formen <math>a_n=a_1k^{n-1}</math>


Test deg selv

Geometrisk rekke

En geometrisk rekke er summen av elementene i en geometrisk progresjon.


For geometriske rekker <math>a_n=a_1k^{n-1}</math> er <math>S_n=\sum_{i=1}^n a_i=a_1\frac{k^n-1}{k-1}</math>

Bevis for summeformel

Betrakt tallet <math>(k-1)(1+k+k^2+k^3+ \ldots +k^n)</math>. Ganger vi ut parentesene, får vi <math>(k+k^2+k^3+ \ldots + k^{n+1})-(1+k+k^2+k^3+ \ldots + k^n) = k^{n+1}-1</math>. Men dersom

<math>(k-1)(1+k+k^2+ \ldots + k^n) = k^{n+1}-1</math>

kan vi dele med faktoren <math>(k-1)</math> på begge sider og få

<math>\sum_{i=0}^{n}k^i = 1+k+k^2+ \ldots + k^n = \frac{k^{n+1}-1}{k-1} </math>

Multipliserer vi så med <math>a_1</math> på begge sider, vil vi oppnå summeformelen, og beviset er ferdig.

Uendelige geometriske rekker

Endelige rekker gir oss en verdi. Uendelige rekker kan enten gå mot en bestemt verdi, eller de kan gå mot uendelig. Dersom en rekke divergerer går summen mot uendelig. Dersom rekken konvergerer har den en endelig sum.

Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. Det vil si at summen av uendelig mange etterfølgende elementer i følgen har en endelig verdi.

I slike tilfeller er $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{i=1}^n a_i=\frac{a_1}{1-k}$