S1 2023 Høst LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løysingsforslag laga av Torodd F. Ottestad

Løsningsforslag laget av Realfagsportalen

Løsningsforslag laget av Farhan Omar

Videoløsning del 1 av Lektor Lainz (Reabel)

DEL 1

Oppgave 1

$ {(\frac{3a^2}{2b^3})}^2 \cdot {( \frac{a^2b^{-5}}{4})}^{-1} = \frac{9 a^4 \cdot 4}{4b^6 \cdot a^2 \cdot b^{-5}} = \frac{9a^2}{b}$

Oppgave 2

$2 \ln e^3 = 2\cdot 3 \ln e =6$

Vi vet at lg(70) er mellom 1 og 2 fordi lg(10) = 1 og lg(100) = 2. Derfor er 3lg(70) mellom 3 og 6 (større enn 3 og mindre enn 6).

$e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$

I stigende rekkefølge:

$3 \lg(70), \quad 2 \ln e^3, \quad e^{3 \ln 2}$

Oppgave 3

a)

P( alle terningen viser forskjellige øyner) = $\frac 66 \cdot \frac 56 \cdot \frac 46 =\frac{20}{36}=\frac{4\cdot 5}{4\cdot 9}= \frac 59$

b)

Nøyaktig to terninger viser like øyner er alle muligheter minus alle forskjellige (fra a) og alle tre like.

Finner først sannsynligheten for at alle terningene viser like øyner: P( alle like øyner) = $\frac 66 \cdot \frac 16 \cdot \frac 16 = \frac {1}{36}$

P(Kun to terninger viser det samme antall øyner) = $1 - P(alle \quad like) - P (alle \quad forskjellige) = 1- \frac{1}{36} - \frac{20}{36} = \frac {15}{36} = \frac {5}{12}$

Oppgave 4

<math>f(x)= \bigg{\lbrace} \begin{array}{cc} x^2+ 3x - a^2 & x < 1 \\ x-1 & \geq 1 \\ \end{array} </math>

$f(1)= 1-1 = 0$

$\lim\limits_{x \to 1^-} f(x) = \lim\limits_{ x \to 1^-} (x^2 + 3x - a^2) = 4-a^2$

For at funksjonen skal være kontinuerlig må funksjonsverdien bli null når x går mot en nedenfra. Dvs. $a = \pm 2$

Oppgave 5

DEL 2

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6