Prosentregning
Med prosent mener vi "del av hundre". Vi bruker tegnet %.
Eksempel 1:
58% er det samme som <math> \frac{58}{100} </math> eller 0,58.
Som man ser er det en sammenheng mellom prosent, brøk og desimaltall. Desimaltallet, i dette tilfellet 0,58, kalles ofte prosentfaktoren. Skal man gå fra prosent til brøk tar vi prosenten og deler på 100. Utfører vi divisjonen finner vi prosentfaktoren.
Del av tallet
For å finne delen av tallet må man kjenne hele tallet, altså det man skal finne prosenten av, og prosenten:
$$\text{Del av tallet} = \frac{\text {Heletallet} \cdot \text {Prosent}}{100} $$
Eksempel 2:
En TV er på tilbud. Full pris er 3600 kr. Hva er avslaget i kroner når man får 20% avslag på full pris?
$$\text {Del av tallet}= \frac{3600kr \cdot 20}{100} = 720 kr$$
Prosenten
For å finne prosenten, må man kjenne hele tallet og delen av tallet:
$$Prosent= \frac{\text {Del av tallet} \cdot 100}{\text {Hele tallet}} $$
Eksempel 3:
Av en befolkning på 500.000 er det 6000 som lider av schizofreni. Hvor mange prosent lider av sykdommen?
$$\text {Prosent} = \frac {6000 \cdot 100}{500.000}= 1,2 \percent$$
Hele tallet
For å finne Hele tallet, må man kjenne prosenten og "delen av tallet":
$$ \text {Hele tallet} = \frac{\text {Del av tallet} \cdot 100}{\text {Prosent}} $$
Eksempel 4:
På en arbeidsplass var det 8 personer som var syke. Det var 20% av alle ansatte. Hvor mange ansatte var det på arbeidsplassen?
$$ \text {Hele tallet} = \frac{8 \cdot 100}{20}= 40 $$
Altså var det 40 personer som var ansatt på dette stedet.
Endringer i prosent
Det spørres ofte etter endringer i prosent. Husk på at endringen av verdi kan betraktes som del av tallet.
Endring av verdi er det som er nå, minus det som var før.
Endring i prosent er verdiendring delt på den verdi som var før, multiplisert med 100.
Eksempel 5:
Prisen på en bolig steg fra kr. 1.600.000 til kr. 1.900.000 på et år. Hva var prisstigningen i prosent?
Endringen: 1.900.000kr. - 1.600.000 = 300.000 kr.
Her er hele tallet 1.600.000 da dette var verdien på boligen før endringen. Vi får:
$$\frac {300.000 \cdot 100}{1.600.000} =18,75\percent $$
Eksempel 6:
Antall arbeidsledige går ned fra 80600 til 69000, fra en måned til den neste. Hvor stor var nedgangen i prosent?
Vi får:
80600 personer - 69000 personer = 11600 personer
$$\frac {11600 \cdot 100}{80600} =14,4 \percent $$
Vekstfaktor
Når vi ønsker å finne den nye verdien etter en endring i prosent.
Dersom en størrelse endrer seg over tid med en fast prosent kan det være hensiktsmessig å regne med prosentfaktor.
Økning, vekst
Dersom en størrelse vokser med 18% per tidsenhet blir vekstfaktoren:
(100% + 18%) /100% = 118/100 = 1,18
eller
$(1+ \frac{18}{100})= 1+ 0,18 = 1,18$
Dersom veksten er 1,8% per tidsenhet blir vekstfaktoren 1,018. Dersom en størrelse vokser, øker, er vekstfaktoren større enn 1.
Tidsenheter kan være sekunder, minutter, timer, døgn, uker, måneder, år osv.
$( 1 + \frac{p}{100} ) $ der p er prosenten det øker med.
Eva setter inn 15 000 kroner på en sparekonto med 4% renter per år. Hvor mye har hun på kontoen et år senere?
Vi finner først vekstfaktoren: $1+ \frac{4}{100} = 1,04$
Vi multipliserer det beløpet hun satte inn med vekstfaktoren, og får det beløpet hun har etter ett år:
$15000 kr \cdot 1,04 = 15600 kr$
Hun har altså økt formune med 600 kroner på et år og har nå 15600 kroner i banken.
Reduksjon
Dersom noe reduseres, minker eller avtar med en gitt prosent per tidsenhet er vekstfaktoren gitt ved:
$1- \frac {p}{100}$ , der p er prosenten størrelsen avtar med.
Vi observerer at ved reduksjon er pluss erstattet av minus.
Prosentvis reduksjon over flere perioder
Dersom en verdi A vokser med en gitt prosent over flere tidsperioder kan det uttrykkes slik:
Vekstfaktor = VF
$A \cdot (VF)^t $, der t er tidsperioder, for eksempel år.
Eksempel.
Jon Erik setter inn 5000 kroner i banken i år 2000. Hvor mye har han på den kontoen i 2040, altså etter 40 år, nær renten hele tiden er 2,5% per år?
Vekstfaktoren er 1,025. Vi får:
$6000 \cdot 1,025^{40} = 16110,38$ kr.
Fortid og framtid
Samenlikne størrelser
Vi har to tall, 75 og 100.
Hvor mange prosent større er 100 enn 75?
Her er det 75 som er referansen. Det ser man av "..... enn 75?". Da blir prosenten forskjellen delt på 75, ganger hundre:
$ \frac {100-75}{75} \cdot 100$ % $ = 33,3 $%
100 er altså 33,3% større enn 75.
Hvor mange prosent mindre er 75 enn 100?
Nå er det 100 som er refereransen, det forskjellen skal måles mot:
$\frac{100-75}{100} \cdot 100 $ % $= 25$ %
75 er 25% mindre enn 100.
Det er ikke altid like klart hva som er referansen, altså hva forskjellen skal sammenlignes med. Bruk litt tid på å lese og analysere oppgaveteksten.