2P 2016 vår LØSNING
Diskusjon av denne oppgaven på matteprat
Del 1 Løsningsforslag laget av mattepratbruker jøgge
Del 2 Løsningsforslag laget av mattepratbruker jøgge
Løsningsforslag fra mattepratbruker Oyan
DEL EN
Oppgave 1)
-6, -4, 0, 2, 2, 6.
Variasjonsbredde: 6 - ( - 6 ) = 12
Variasjonsbredden er 12 grader.
Median: $\frac {0+2}{2} = 1$
Median er 1 grad.
Gjennomsnitt: $\frac{-6 +(-4)+0+2+2+6}{6} = \frac 06 =0$
Gjennomsnittsteperaturen denne perioden er null grader celsius.
Oppgave 2)
Forutsetter at en måned er 30 dager.
$7500 000 000 \cdot 2 \cdot 30 = \\ 7,5 \cdot 10^9 \cdot 6,0 \cdot 10 = \\7,5 \cdot 6,0 \cdot 10^{10} = \\ 45 \cdot 10^{10} = 4,5 \cdot 10^{11}$
Oppgave 3)
Ptis bukse i butikk A: 150 kr, og i butikk B: 120 kr.
a)
$\frac{150-120}{120} = \frac 14 = 25$%
Buksene er 25% dyrere i butikk A, i forhold til i butikk B.
b)
$\frac{150-120}{150} = \frac 15 = 20$%
Buksene er 20% billigere i butikk B, i forhold til i butikk A.
Oppgave 4)
Pris på jakke uten MVA:
$x \cdot 1,25 = 750 \\ x= \frac{750}{1,25} = 600$
Jakken koster 600 kroner uten MVA, altså er merverdiavgiften 150 kroner.
Oppgave 5)
a)
b)
c)
Oppgave 6)
a)
b)
c)
Oppgave 7)
a)
Dersom noe øker eksponentielt betyr det at det vokser med en fast prosent hver tidsperiode.
b)
b er eneste kurve som oppfuller kravet i a. c vokser lineært, altså med en fast størrelse hver tidsperiode. a vokser mindre etter en stund, noe som kan minne om logistisk vekst (ikke pensum i 2P).
Oppgave 8)
Skriver alle tallene på standardform:
$ 0,046\cdot 10^{11}= 4,6 \cdot 10^{9} \\ \frac{46}{1000000}= 0,000046 = 4,6 \cdot 10^{-5} \\ 46\cdot 10^{-7} =4,6 \cdot 10^{-6} \\ 4600000 = 4,6 \cdot 10^6 \\ 4,6 \cdot 10^8 \\ 0,46\cdot 10^{-6 } = 4,6 \cdot 10^{-7} $
Faktoren 4,6 går igjen i alle tallene og vi kan sortere etter størrelse ved å se på eksponenten i tierpotensen:
I stigende rekkefølge: $10^{-7}, 10^{-6}, 10^{-5}, 10^6, 10^8, 10^9.$