Base endring (logaritme): Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 3: Linje 3:
<math>b^{lg_bx} = x</math>
<math>b^{lg_bx} = x</math>


Man ønsker nå å bytte til base a:
Man ønsker nå å bytte til base a:<math>lg_a(b^{lg_bx}) = lg_ax</math>   
<math>lg_a(b^{lg_bx}) = lg_ax</math>   


alle a, b og x er positive størrelser
alle a, b og x er positive størrelser

Sideversjonen fra 5. mar. 2013 kl. 04:53

Det vanligste er å bruke 10 eller e som base, men et hvilket som helst tall kan i utgangspunktet brukes som base. Gitt en base b gjelder

<math>b^{lg_bx} = x</math>

Man ønsker nå å bytte til base a:<math>lg_a(b^{lg_bx}) = lg_ax</math>

alle a, b og x er positive størrelser

I følge regnereglene for logaritmer får man da: <math>(lg_ab)(lg_bx) = lg_ax</math>

eller <math>lg_bx = \frac{lg_ax}{lg_ab}</math>


Du vil nok oppleve at de fleste kalkulatorer har problemer med andre baser enn 10 og e, men et enkelt eksempel illustrerer sammenhengen.

Eks :

3∙3∙3∙3 = 81, dvs. logaritmen til 81 er 4 dersom basen er 3, eller

<math>lg_381 = 4</math> som i følge formelen over skal være lik:


<math>lg_381 = \frac{ lg_{10}81 }{ lg_{10}3 }= 4</math>

som vi forventet.

Dersom man bytter alle x med a får man:


<math>lg_bx = \frac{lg_ax}{lg_ab} \\ lg_ba = \frac{1}{lg_ab}</math>


Endring av base er ikke pensum i Kunnskapsløftet