1T 2012 høst LØSNING: Forskjell mellom sideversjoner
Ingen redigeringsforklaring |
Ingen redigeringsforklaring |
||
Linje 22: | Linje 22: | ||
[[Fil:1T-host2012.png]] | [[Fil:1T-host2012.png]] | ||
== Oppgave 7 == | == Oppgave 7 == | ||
<tex>(x+5)(x+3)-(x+5) | <tex>(x+5)(x+3)-(x+5)(2x+7)=0 \\ (x+5)(x+3-2x-7)=0 \\ (x+5)=0 \quad \vee \quad -x-4=0 \\ x=-5 \quad \vee \quad x=-4</tex> | ||
== Oppgave 8 == | == Oppgave 8 == | ||
=== a) === | === a) === |
Sideversjonen fra 27. nov. 2012 kl. 07:46
Oppgave 1
a = -2 og punkt. (3,0)
<tex>0 = -2 \cdot 3 + b \\ b= 6 \\ dvs: \\ y=-2x+6</tex>
Oppgave 2
<tex>lg(2x+3) = 1 \\ 10^{lg(2x+3)} = 10^1 \\ 2x+3 =10 \\ x= \frac 72</tex>
Oppgave 3
<tex>\frac{(2x)^3x^2}{2^5x^{-1}} = 2^{3-5}x^{3+2+1}= \frac{x^6}{4}</tex>
Oppgave 4
<tex>\frac{x^2+6x+9}{x^2-9} = \frac{(x+3)(x+3)}{(x+3)(x-3)} = \frac{x+3}{x-3}</tex>
Oppgave 5
<tex> (\sqrt2 + \sqrt8)^2 = 2+2\sqrt2\sqrt8+8 = 18</tex>
Oppgave 6
a)
Nullpunkter:
f(x) = 0
<tex> x^2+2x-3 =0 \\ x= \frac{-2 \pm\sqrt{4+4 \cdot 3}}{2} \\ x=-3 \quad \vee \quad x=1</tex>
b)
<tex>f'(x) = 2x+2 \\ f'(x) = 0 \\ x= -1 \\ f(-1)=-4</tex>
f har et ekstremalpunkt i (-1,-4). Dette er et minimumspunkt da den deriverte er negativ for verdier mindre enn -1, og positiv for større verdier.
c)
Oppgave 7
<tex>(x+5)(x+3)-(x+5)(2x+7)=0 \\ (x+5)(x+3-2x-7)=0 \\ (x+5)=0 \quad \vee \quad -x-4=0 \\ x=-5 \quad \vee \quad x=-4</tex>
Oppgave 8
a)
Bio | <tex>\bar{Bio}</tex> | Sum | |
Fys | <tex>5</tex> | <tex>7</tex> | <tex>12</tex> |
<tex>\bar{Fys}</tex> | <tex>9</tex> | <tex>4</tex> | <tex>13</tex> |
Sum | <tex>14</tex> | <tex>11</tex> | <tex>25</tex> |