Bevis for cosinussetningen: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 17: Linje 17:
[[Bilde:Bevcos2.PNG]]
[[Bilde:Bevcos2.PNG]]


 
Bruker pytagoras på trekanten DBC:<p></p>
<tex>a^2 = h^2 + (c+x)^2 \\ a^2 = h^2 + c^2 +2cx + x^2</tex><p></p>
Bruker pytagoras på trekanten DAC:<p></p>


----
----


[[Category:bevis]][[Category:1T]][[Category:lex]]
[[Category:bevis]][[Category:1T]][[Category:lex]]

Sideversjonen fra 22. sep. 2011 kl. 07:04

Man må vise at setningen gjelder både for spissvinklede og stompvinklede trekanter.

Spissvinklede:

Bruker pytagoras på trekanten ADC:

<tex>x^2 + h^2 = b^2 \Rightarrow h^2 = b^2 - x^2</tex>

Bruker pytagoras på trekanten DBC:

<tex>h^2 + (c-x)^2 = a^2</tex>

<tex>b^2 - x^2 + c^2 - 2cx + x^2 =a^2 \\

a^2 = b^2 + c^2 -2cx</tex>

Finner cosA:

<tex>cosA = \frac xb \Rightarrow x = b \cdot cosA</tex>

og får:

<tex>a^2 = b^2 + c^2 -2bc cosA</tex>

Stompvinklede:

Bruker pytagoras på trekanten DBC:

<tex>a^2 = h^2 + (c+x)^2 \\ a^2 = h^2 + c^2 +2cx + x^2</tex>

Bruker pytagoras på trekanten DAC: