Figurer i planet: Forskjell mellom sideversjoner
Linje 241: | Linje 241: | ||
<p></p> AC = 4,6 cm og BC = 9,2 cm. | <p></p> AC = 4,6 cm og BC = 9,2 cm. | ||
</blockquote> | </blockquote> | ||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=A94%2BA95%2BA96%2BA97%2BA98%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | |||
== Firkanter == | == Firkanter == |
Sideversjonen fra 15. jun. 2011 kl. 07:16
Punkt
Et punkt markeres med et kryss. Punktet P kan markeres slik:
Linjer
Linjen m har uendelig utstrekning, den fortsetter i begge retninger. Linjestykket AB ligger på linjen n. Linjen n er uendelig lang, men linjestykket AB har en målbar lengde. Linjen o er uendelig lang, det er også linjestrålen som slutter i C.
Dette kan markeres slik:
Parallelle Linjer
Dersom linjen l er parallell med linjen m betyr det at disse to linjene aldri vil krysse hverandre. Vi skriver det slik:
m || n
Linjene kan se slik ut:
Dersom linjene er parallelle betyr det at avstanden mellom dem er den samme hele veien. Det betyr at avstanden b1 er den samme som b2.
Vinkler
Rette linjer som ikke er parallelle vil før eller siden krysse hverandre (i planet). Da vil de danne en vinkel. Symbolet for en vinkel er<tex>\angle </tex> . Dette tegnet må ikke forveksles med < som betyr "mindre enn". Vinkelen ABC kan skrives slik: ABC, eller noen ganger bare som B. Vinkelen kan se slik ut:
En vinkel består av to vinkelbein og et toppunkt. Toppunktet er der hvor vinkelbeina møtes (eller krysser hverandre). AB og BC er vinkelbein og B er toppunktet. I denne figuren kunne vi kalt vinkelen for B, men vi skal senere se at vi av og til må kalle vinklene med vinkelbein, altså ABC, for å unngå missforståelser.
Dersom du leser tekniske bøker eller mattebøker for noen som har studert matte en stund vil du se at man ofte bruker greske bokstaver når vi gir vinklene navn. Det kan være eller andre. Disse bokstavene bruker vi ikke på ungdomskolen (men de ser jo litt morsomme ut!!).
Lengde måles i meter og tid i sekunder eller timer. Vinkler måles i grader. Dette har ingen ting med temperatur å gjøre, men symbolet vi bruker er det samme. 30 grader skrives 30º. En sirkel måler 360°. Gradeskiven din (også kalt transportør) kan du bruke når du tegner eller måler vinkler. Den går vanligvis opp til 180°.
Det er forskjellige navn på forskjellige typer vinkler. Vi skal se på disse.
Definisjoner:
1: Rett vinkel, er en vinkel som er 90°. Kalles også for 90 graders vinkel.
2: Spiss vinkel, er en vinkel som er mindre enn 90º.
3: Stomp vinkel, er en vinkel som er større enn 90º.
Nabo vinkler
Summen av to nabovinkler er 180º
Toppvinkler
Når to linjer krysser hverandre dannes det fire vinkler som parvis er like store.
Samsvarende vinkler
Vinkler som har forskjellig toppunkt, men et vinkelbein felles, kalles samsvarende vinkler.
Speiling & symmetri
Speiling om en Linje
Når du betrakter deg selv i speilet vil du se følgende: Dersom du beveger deg mot speilet, vil speilbildet bevege seg mot deg. Dersom du rygger vil speilbildet trekke seg tilbake. Tenk deg at vi kunne observere dette fra siden, da ville vi ha ditt hode og speilbildet i profil, og speilet ville bare være en strek (fordi vi ser det fra siden). Dette kan se noe slik ut:
Når vi i matematikken skal speile noe om en akse eller linje gjør vi følgende: Vi trekker linjer fra punkt på det objekt som skal speiles. Disse linjene skal stå normalt på linjen man speiler om. Mål avstanden fra punktet på objektet til speilingslinjen. Denne avstanden Legger du så til på andre siden av speilingslinjen. Der merker du av punktet som blir et punkt på speilbildet. Dersom vi har en figur med et punkt A, kaller vi tilsvarende punkt på speilbildet for A'. Dette kan foreksempel se slik ut:
Legg merke till at avstanden fra Ø til speil er lik avstanden fra speil til Ø', avstanden fra N til speil er lik avstanden fra speil til N', osv.
Om vi starter med situasjonen til venstre
blir resultatet av speilingen situasjonen til høyre. Dersom figuren vi skal speile ligger delvis over speilingslinjen kan det se slik ut:
Symmetriakser
Noen eksempler på symmetriakser er vist nedenfor. Vi observerer at forskjellige former har forskjellig antall symmetriakser.
Dersom vi bretter disse figurene langs en symmetriakse, de røde strekene, ser vi at delene på hver side av aksen vil overlappe hverandre fullstendig.
Speiling om et Punkt
Når vi speiler om et punkt trekker vi linjer fra objektet som skal speiles, gjennom punktet. Avstanden fra objektet til punktet er lik avstanden fra punktet til speilbildet.
Eks:
Kongruente Former
Geometriske figurer som dekker hverandre helt når vi legger den oppå hverandre kalles for kongruente. Det kan tenkes at vi må rotere figurene for at de skal dekke hverandre.
Dersom figur B roteres 90º med klokka, ser vi at figur A og B dekker hverandre helt. A og B er kongruente figurer.
Trekanter
En trekant har tre vinkler og tre sidekanter.
Vinkelsummen av en trekant er 180°
A + B + C = 180°
Arealet av en trekant er
<tex>A= \frac{Gh}{2} </tex>
Der G er grunnlinja og h er høyden av trekanten.
Figuren under viser hvorfor formelen for arealet er slik.
Rettvinklet Trekant
En rettvinklet trekant består av to kateter og en hypotenus. Begge katetene vil alltid utgjøre vinkelbeina i den rette vinkelen. Hypotenusen vil alltid være den lengste siden i trekanten.
En rett vinkel er 90 grader og markeres som vist i A.
Arealet av en rettvinklet trekant er katet ganger katet delt på to. Fordi det ene katetet gir høyden i trekanten, og det andre grunnlinjen. Det er selvsagt mulig å bruke hypotenusen som grunnlinjen, men det vil ogfe føre til noe mer komplisert regning fordi man da må finne høyden fra hypotenusen til motstående vinlel.
Likebeint Trekant
Dersom to av sidene i en trekant er like lange er trekanten likebeint. "Pinnene" på sidene AC og BC markere at disse sidene er like lange. Når to sider i en trekant er like lange medfører det at to vinkler er like store. I dette eksempelet er vinkel A og vinkel B like store.
Likesidet Trekant
I en likesidet trekant er alle sidene like lange og alle vinklene er 60°
Pythagoras
I en rettvinklet trekant er arealet av kvadratet på hypotenusen lik summen av arealet til kvadratene på katetene.
<tex>c^2 = a^2 + b^2 </tex>
Vi bruker setningen til å finne lengden av en side i en rettvinklet trekant når de to andre sidene er kjent.
Setningen gjelder kun for rettvinklede trekanter.
Eksempel 1: (hypotenus og et katet kjent)
Hva er lengden av AC?
<tex>(AB)^2 +(AC)^2 = (BC)^2 \\(5cm)^2 + (AC)^2 = (10cm)^2 \\25cm^2 + (AC)^2 = 100cm^2 \\AC = \sqrt {75cm^2} = 8,7 cm </tex>
Eksempel 2: (begge kateter kjent)
Hva er lengden av BC?
<tex>(AB)^2 +(AC)^2 = (BC)^2 \\(3cm)^2 + (4cm)^2 = (BC)^2 \\9cm^2 + 16cm^2 = (BC)^2 \\BC = \sqrt {25cm^2} = 5 cm </tex>
I en rettvinklet trekant der vinklene er 30° ,60° og 90° vil alltid hypotenusen være dobbelt så lang som det korteste katetet. Det korteste katetet vil alltid være det motstående til vinkelen på 30°. Dette medfører blant annet at vi er i stand til å finne to sider i en rettvinklet trekant, når betingelsene er som over og vi kjenner en side.
Eksempel 3:(spesialtilfelle)
Finn AC og BC.
Siden vi har 30°,60° og 90° i trekanten vet vi at BC = 2 AC. La oss sette AC = x
<tex>(AB)^2 +(AC)^2 = (BC)^2 \\(8cm)^2 + x^2 = (2x)^2 \\64cm^2 + x^2 = 4x^2 \\3x^2 = 64cm^2\\x^2 = 21,3cm^2\\x=4,6cm </tex>
AC = 4,6 cm og BC = 9,2 cm.
Firkanter
Kvadrat
Et kvadrat er en firkant hvor alle sidene er like lange og alle vinklene er 90°. Diagonalene er markert med røde linjer. En diagonal er en rett linje som går fra et hjørne i firkanten til motstående hjørne.
Arealet av kvadratet er: A = a · a = a2
Omkretsen er: O = a + a + a + a = 4a.
Rektangel
Et rektangel er en firkant der sidene er parvis like lange. Vinklene er 90°.
Arealet av rektangelet er: A = ab
Omkretsen er: O = a + a + b + b = 2a + 2b.
Parallellogram
Et parallellogram er en firkant hvor sidene er parvis parallelle.
Areal:
er A = ah
Omkrets
O = 2(a+b)
Rombe
En rombe er en firkant der alle sidene er like lange og parvis parallelle.
Areal:
A = ah
Omkrets:
Da alle sidene er like lange er
a = b = c = d
Da blir
O = 4a
Trapes
I et trapes er to av sidene parallelle, men ikke like lange.
Areal:
<tex> A= \frac{h \cdot (AB+CD)}{2}</tex>
Omkrets:
O = AB + BC + CD + DA