1T 2024 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 46: Linje 46:
Arealet av det store kvadratet:
Arealet av det store kvadratet:


$(t+s)(t+S) = t^2 + 2ts + s^2$
$(t + s)(t + s) = t^2 + 2ts + s^2$


Dette er en matematisk identitet, 1. kvadratsetning. Det andre leddet på høyre side, 2ts er arealet av de to rektangelene i fuguren, som begge har areal t ganger s.
Dette er en matematisk identitet, 1. kvadratsetning. Det andre leddet på høyre side, 2ts er arealet av de to rektangelene i fuguren, som begge har areal t ganger s.


==DEL TO==
==DEL TO==

Sideversjonen fra 23. nov. 2024 kl. 12:05

Oppgaven som pdf

Diskusjon av oppgaven på matteprat


DEL EN

Oppgave 1

$u = 30 ^\circ$


$2 \cdot \sin(u) \cdot \cos(u) = 2 \cdot \frac 12 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$

2u blir 60 grader og fra figuren ser vi at $\sin(2u) = \sin (60^\circ) = \frac{\sqrt{3}}{2}$ så formelen stemmer.

Oppgave 2

Vi ser at dette er en andregradsfunksjon med nullpunkter for x= -3 og x = 1. Vi har symmetri så funksjonen vil ha sin laveste verdi når x = -1.

$f(-1) = (-1-1)(-1+3) = -2 \cdot 2 = -4$


Bunnpunkt (-1, 4)

Oppgave 3

Oppgave 4

a)

Tangens er sinus delt på cosinus. Tangens til 50 grader er større enn en fordi $\frac{0,77}{0,64}$ er større enn 1.


b)

Vinkelen befinner seg i andre kvadrant der cosinus er negativ og sinus positiv. Da er tangens negativ, altså mindre enn null.

Oppgave 5


Arealet av det store kvadratet:

$(t + s)(t + s) = t^2 + 2ts + s^2$

Dette er en matematisk identitet, 1. kvadratsetning. Det andre leddet på høyre side, 2ts er arealet av de to rektangelene i fuguren, som begge har areal t ganger s.

DEL TO