1T 2024 høst LØSNING: Forskjell mellom sideversjoner
Linje 42: | Linje 42: | ||
[[File: 23112024-09.png|400px]] | [[File: 23112024-09.png|400px]] | ||
Arealet av det store kvadratet: | |||
$(t+s)(t+S) = t^2 + 2ts + s^2$ | |||
Dette er en matematisk identitet, 1. kvadratsetning. Det andre leddet på høyre side, 2ts er arealet av de to rektangelene i fuguren, som begge har areal t ganger s. | |||
==DEL TO== | ==DEL TO== |
Sideversjonen fra 23. nov. 2024 kl. 12:04
Diskusjon av oppgaven på matteprat
DEL EN
Oppgave 1
$u = 30 ^\circ$
$2 \cdot \sin(u) \cdot \cos(u) = 2 \cdot \frac 12 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$
2u blir 60 grader og fra figuren ser vi at $\sin(2u) = \sin (60^\circ) = \frac{\sqrt{3}}{2}$ så formelen stemmer.
Oppgave 2
Vi ser at dette er en andregradsfunksjon med nullpunkter for x= -3 og x = 1. Vi har symmetri så funksjonen vil ha sin laveste verdi når x = -1.
$f(-1) = (-1-1)(-1+3) = -2 \cdot 2 = -4$
Bunnpunkt (-1, 4)
Oppgave 3
Oppgave 4
a)
Tangens er sinus delt på cosinus. Tangens til 50 grader er større enn en fordi $\frac{0,77}{0,64}$ er større enn 1.
b)
Vinkelen befinner seg i andre kvadrant der cosinus er negativ og sinus positiv. Da er tangens negativ, altså mindre enn null.
Oppgave 5
Arealet av det store kvadratet:
$(t+s)(t+S) = t^2 + 2ts + s^2$
Dette er en matematisk identitet, 1. kvadratsetning. Det andre leddet på høyre side, 2ts er arealet av de to rektangelene i fuguren, som begge har areal t ganger s.