S1 2024 Høst LØSNING: Forskjell mellom sideversjoner
Linje 51: | Linje 51: | ||
=====a)===== | =====a)===== | ||
To kuler med samme farge: | |||
P(to i samme farge) = P(to røde) + P(to blå) + P( to gule) | |||
$ \frac {4} {9} \cdot \frac {3} {8} + \frac {3} {9} \cdot \frac {2} {8} +\frac {2} {9} \cdot \frac {1} {8} = \frac {12+6+2} {72} = \frac {5} {18} $ | |||
=====b)===== | =====b)===== |
Sideversjonen fra 17. nov. 2024 kl. 09:23
Diskusjon av oppgaven på matteprat
DEL EN
Oppgave 1
$f(x) = \frac{e^{2x}}{x}$
Deriverer f: $f'(x) = \frac{(e^{2x})' \cdot x + x' \cdot e^{2x}}{x^2} = \frac{2xe^{2x} + e^{2x}}{x^2} = \frac{e^{2x} (2x + 1)}{x^2} $
Oppgave 2
Oppgave 3
$100 ^x - 3 \cdot 10^x= 4$
$ (10^2)^x - 3 \cdot 10^x-4 =0$
$(10^x)^2 - 3 \cdot 10^x- 4 = 0$
$10^x = \frac{3 \pm \sqrt{9+16}}{2}$
$10^x = \frac{3 \pm 5}{2}$
Vi er bare interessert i den positive verdien fordi vi ikke kan opphøye 10 i noe som gir en negativ verdi.
$10^x = 4$
$x = lg(4)$
Oppgave 4
\[ \lim_{x\to \infty} \frac{x^2+x-12}{2x^2 -18} \]
\[ \lim_{x\to \infty} \frac{\frac{x^2}{x^2}+ \frac{x}{x^2}- \frac{12}{x^2}}{ \frac{2x^2}{x^2} - \frac{18}{x^2}} \]
\[ \lim_{x\to \infty} \frac{1 + \frac{1}{x}- \frac{12}{x^2}}{ 2 - \frac{18}{x^2}} = \frac 12 \]
Oppgave 5
a)
To kuler med samme farge:
P(to i samme farge) = P(to røde) + P(to blå) + P( to gule)
$ \frac {4} {9} \cdot \frac {3} {8} + \frac {3} {9} \cdot \frac {2} {8} +\frac {2} {9} \cdot \frac {1} {8} = \frac {12+6+2} {72} = \frac {5} {18} $
b)
Oppgave 6
Både g og f tilfredsstiller kravet om gjennomsnittlig vekstfart i intervallet [0,4]. g har derivert lik 0,5 for alle x, så det er kun f som tilfredsstiller kravene.