R1 2024 Vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Lektor Seland (diskusjon | bidrag)
m La til mitt løsningsforslag
Quiz (diskusjon | bidrag)
Ingen redigeringsforklaring
Linje 4: Linje 4:


[https://lektorseland.no/Løsningsforslag/Eksamen_R1_V24_Løsning_Lektor_Seland.pdf Løsningsforslag fra Lektor Seland]
[https://lektorseland.no/Løsningsforslag/Eksamen_R1_V24_Løsning_Lektor_Seland.pdf Løsningsforslag fra Lektor Seland]
=DEL 1=
==Oppgave 1==
$f(x)=4x^2\cdot ln(3x)$
$f'(x)=8x\cdot ln(3x) + 4x^2 \cdot \frac{1}{3x}\cdot 3$
$f'(x)=8x\cdot ln(3x) + 4x$
==Oppgave 2==
$(ln\,x)^2-lnx=6$
Setter $u=ln\,x$
$u^2-u-6=0$
$(u+2)(u-3)=0$
$u=-2 \vee u=3$
$ln\,x=-2 \vee ln\,x=3$
$x=e^{-2}\vee x=e^3$
$x=\frac{1}{e^2}\vee x=e^3$
==Oppgave 3==
\[f(x)=e^{-x+1},\,D_f=\mathbb{R}\]
\[ \lim_{x\to \infty} e^{-x+1}=e^{-\infty}=\frac{1}{e^{\infty}}=0\]
\[ \lim_{x\to -\infty} e^{-x+1}=e^{\infty}=\infty\]
==Oppgave 4==
===a)===
===b)===
==Oppgave 5==
Vi endrer funksjons definisjonsområde til at 2 ikke er med i definisjonsmengden. :
\[ f(x) = \begin{cases}
\quad \quad x,\quad 0\leq x <2  \\
\, 5-x,\quad 2<x\leq 5  \\ 
\end{cases} \]
Vi har ivaretatt alle kravene:
$\bullet$ Verdimengden er uendret.
$\bullet$ Definisjonsmengden er så stor som mulig (uten å endre verdimengden)
$\bullet$ f er kontinuerlig. Vi sier at f er kontinuerlig hvis f er kontinuerlig for alle $a\in D_f$. Siden funksjonen f ikke er definert i punktet 2, så er f kontinuerlig i alle punkter i definisjonsmengden.
For nærmere forklaring, se s.129-131 i Aschehougs bok "Matematikk S1".

Sideversjonen fra 12. jul. 2024 kl. 08:31

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsningsforslag fra Lektor Seland

DEL 1

Oppgave 1

$f(x)=4x^2\cdot ln(3x)$

$f'(x)=8x\cdot ln(3x) + 4x^2 \cdot \frac{1}{3x}\cdot 3$

$f'(x)=8x\cdot ln(3x) + 4x$

Oppgave 2

$(ln\,x)^2-lnx=6$

Setter $u=ln\,x$

$u^2-u-6=0$

$(u+2)(u-3)=0$

$u=-2 \vee u=3$

$ln\,x=-2 \vee ln\,x=3$

$x=e^{-2}\vee x=e^3$

$x=\frac{1}{e^2}\vee x=e^3$

Oppgave 3

\[f(x)=e^{-x+1},\,D_f=\mathbb{R}\]

\[ \lim_{x\to \infty} e^{-x+1}=e^{-\infty}=\frac{1}{e^{\infty}}=0\]

\[ \lim_{x\to -\infty} e^{-x+1}=e^{\infty}=\infty\]

Oppgave 4

a)

b)

Oppgave 5

Vi endrer funksjons definisjonsområde til at 2 ikke er med i definisjonsmengden. :

\[ f(x) = \begin{cases} \quad \quad x,\quad 0\leq x <2 \\ \, 5-x,\quad 2<x\leq 5 \\ \end{cases} \]

Vi har ivaretatt alle kravene:

$\bullet$ Verdimengden er uendret.

$\bullet$ Definisjonsmengden er så stor som mulig (uten å endre verdimengden)

$\bullet$ f er kontinuerlig. Vi sier at f er kontinuerlig hvis f er kontinuerlig for alle $a\in D_f$. Siden funksjonen f ikke er definert i punktet 2, så er f kontinuerlig i alle punkter i definisjonsmengden.

For nærmere forklaring, se s.129-131 i Aschehougs bok "Matematikk S1".