S1 2023 Høst LØSNING: Forskjell mellom sideversjoner
Linje 21: | Linje 21: | ||
$2 \ln e^3 = 2\cdot 3 \ln e =6$ | $2 \ln e^3 = 2\cdot 3 \ln e =6$ | ||
Vi vet at lg(70) er mellom 1 og 2 fordi lg(10) = 1 og lg(100) = 2. Derfor er 3lg(70) mellom 3 og 6 (større enn 3 og mindre enn 6). | |||
$e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$ | $e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$ |
Sideversjonen fra 9. jul. 2024 kl. 12:42
Diskusjon av oppgaven på matteprat
Løysingsforslag laga av Torodd F. Ottestad
Løsningsforslag laget av Realfagsportalen
Løsningsforslag laget av Farhan Omar
Videoløsning del 1 av Lektor Lainz (Reabel)
DEL 1
Oppgave 1
$ {(\frac{3a^2}{2b^3})}^2 \cdot {( \frac{a^2b^{-5}}{4})}^{-1} = \frac{9 a^4 \cdot 4}{4b^6 \cdot a^2 \cdot b^{-5}} = \frac{9a^2}{b}$
Oppgave 2
$2 \ln e^3 = 2\cdot 3 \ln e =6$
Vi vet at lg(70) er mellom 1 og 2 fordi lg(10) = 1 og lg(100) = 2. Derfor er 3lg(70) mellom 3 og 6 (større enn 3 og mindre enn 6).
$e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$
I stigende rekkefølge:
$3 \lg(70), \quad 2 \ln e^3, \quad e^{3 \ln 2}$
Oppgave 3
a)
P( alle terningen viser forskjellige øyner) = $\frac 66 \cdot \frac 56 \cdot \frac 46 = \frac 59$
b)
Nøyaktig to terninger viser like øyner er alle muligheter minus alle forskjellige (fra a) og alle tre like.
Finner først sannsynligheten for at alle terningene viser like øyner: P( alle like øyner) = $\frac 66 \cdot \frac 16 \cdot \frac 16 = \frac {1}{36}$
P(Kun to terninger viser det samme antall øyner) = $1 - P(alle \quad like) - P (alle \quad forskjellige) = 1- \frac{1}{36} - \frac{20}{36} = \frac {15}{36} = \frac {5}{12}$
Oppgave 4
<math>f(x)= \bigg{\lbrace} \begin{array}{cc} x^2+ 3x - a^2 & x < 1 \\ x-1 & \geq 1 \\ \end{array} </math>
$f(1)= 1-1 = 0$
$\lim\limits_{x \to 1^-} f(x) = \lim\limits_{ x \to 1^-} (x^2 + 3x - a^2) = 4-a^2$
For at funksjonen skal være kontinuerlig må funksjonsverdien bli null når x går mot en nedenfra. Dvs. $a = \pm 2$