S1 2024 Vår LØSNING: Forskjell mellom sideversjoner
Linje 46: | Linje 46: | ||
===b)=== | ===b)=== | ||
Det er 3*2*1 = 6 måter å trekke 3 sokker med ulik farge: GSH, GHS, HSG, HGS, SGH, SHG. Det er samme sannsynlighet for hver av disse. | |||
P(3 ulike farger) = $6\cdot \frac{6\cdot 5\cdot 4}{15\cdot 14\cdot 13} = 6\cdot \frac{2\cdot 4}{14\cdot 13}=\frac{24}{7\cdot 13}=\frac{24}{91} $ | |||
P(minst 2 sokker av samme farge) = 1 - P(3 ulike farger) = $1-\frac{24}{91}=\frac{67}{91}$ | |||
==Oppgave 5== | ==Oppgave 5== | ||
=DEL 2= | =DEL 2= |
Sideversjonen fra 8. jul. 2024 kl. 08:52
Diskusjon av oppgaven på matteprat
DEL 1
Oppgave 1
$f(x)=4x^2\cdot ln(3x)$
$f'(x)=8x\cdot ln(3x) + 4x^2 \cdot \frac{1}{3x}\cdot 3$
$f'(x)=8x\cdot ln(3x) + 4x$
Oppgave 2
$(ln\,x)^2-lnx=6$
Setter $u=ln\,x$
$u^2-u-6=0$
$(u+2)(u-3)=0$
$u=-2 \vee u=3$
$ln\,x=-2 \vee ln\,x=3$
$x=e^{-2}\vee x=e^3$
$x=\frac{1}{e^2}\vee x=e^3$
Oppgave 3
\[f(x)=e^{-x+1},\,D_f=\mathbb{R}\]
\[ \lim_{x\to \infty} e^{-x+1}=e^{-\infty}=\frac{1}{e^{\infty}}=0\]
\[ \lim_{x\to -\infty} e^{-x+1}=e^{\infty}=\infty\]
Oppgave 4
a)
P(2 gule sokker) = $P(G)\cdot P(G|G)=\frac{6}{15}\cdot\frac{5}{14}=\frac{30}{15\cdot 14}=\frac{2}{14}=\frac{1}{7}$
b)
Det er 3*2*1 = 6 måter å trekke 3 sokker med ulik farge: GSH, GHS, HSG, HGS, SGH, SHG. Det er samme sannsynlighet for hver av disse.
P(3 ulike farger) = $6\cdot \frac{6\cdot 5\cdot 4}{15\cdot 14\cdot 13} = 6\cdot \frac{2\cdot 4}{14\cdot 13}=\frac{24}{7\cdot 13}=\frac{24}{91} $
P(minst 2 sokker av samme farge) = 1 - P(3 ulike farger) = $1-\frac{24}{91}=\frac{67}{91}$