S1 2024 Vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Ingen redigeringsforklaring
Quiz (diskusjon | bidrag)
Linje 6: Linje 6:


==Oppgave 1==
==Oppgave 1==
$f(x)=4x^2\cdot ln(3x)$
$f'(x)=8x\cdot ln(3x) + 4x^2 \cdot \frac{1}{3x}\cdot 3$
$f'(x)=8x\cdot ln(3x) + 4x$
==Oppgave 2==


=DEL 2=
=DEL 2=

Sideversjonen fra 8. jul. 2024 kl. 08:01

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

DEL 1

Oppgave 1

$f(x)=4x^2\cdot ln(3x)$

$f'(x)=8x\cdot ln(3x) + 4x^2 \cdot \frac{1}{3x}\cdot 3$

$f'(x)=8x\cdot ln(3x) + 4x$

Oppgave 2

DEL 2