S1 2023 Vår LK20 LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 22: | Linje 22: | ||
==Oppgave 3== | ==Oppgave 3== | ||
$ \lim_{x\to 2} \frac{x^3-8}{x^2-4} = \frac{2^3-8}{2^2-4} = \frac{0}{0}$ | $ \lim_{x\to 2} \frac{x^3-8}{x^2-4} = \frac{2^3-8}{2^2-4} = \frac{0}{0}$ | ||
Bruker l'Hôpitals regel og deriverer teller og nevner hver for seg. | |||
$ \lim_{x\to 2} \frac{3x^2}{2x}=\frac{3\cdot 2^2}{2\cdot 2}=\frac{12}{4}=3$ | |||
==Oppgave 4== | ==Oppgave 4== |
Sideversjonen fra 5. okt. 2023 kl. 11:21
Diskusjon av oppgaven på matteprat
Løysing laga av Torodd F. Ottestad
DEL 1
Oppgave 1
$\frac{(2ab^{-1})^3\cdot(a^2b^{-2})^{-1}}{4a^2b^{-3}} = \frac{2^3a^3b^{-3}\cdot a^{-2}b^2}{4a^2b^{-3}} = \frac{8}{4}\cdot a^{3+(-2)-2}\cdot b^{-3+2-(-3)} =2a^{-1}b^2=\frac{2b^2}{a}$
Oppgave 2
$f(x)=x\cdot ln\, x$
Bruker produktregelen for derivasjon.
$f'(x)= 1 \cdot ln \, x + x \cdot \frac{1}{x} = ln\, x + 1$
Oppgave 3
$ \lim_{x\to 2} \frac{x^3-8}{x^2-4} = \frac{2^3-8}{2^2-4} = \frac{0}{0}$
Bruker l'Hôpitals regel og deriverer teller og nevner hver for seg.
$ \lim_{x\to 2} \frac{3x^2}{2x}=\frac{3\cdot 2^2}{2\cdot 2}=\frac{12}{4}=3$