S1 2023 Vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 11: Linje 11:
==Oppgave 1==
==Oppgave 1==


$\frac{(2ab^{-1})^3\cdot(a^2b^{-2})^{-1}}{4a^2b^{-3}} = \frac{2^3a^3b^{-3}\cdot a^{-2}b^2}{4a^2b^{-3}} = \frac{8}{4}\cdot a^{3+(-2)-2}b^{-3+2-(3)} =2a-1b^2=\frac{2b^2}{a}$
$\frac{(2ab^{-1})^3\cdot(a^2b^{-2})^{-1}}{4a^2b^{-3}} = \frac{2^3a^3b^{-3}\cdot a^{-2}b^2}{4a^2b^{-3}} = \frac{8}{4}\cdot a^{3+(-2)-2}b^{-3+2-(3)} =2a^{-1}b^2=\frac{2b^2}{a}$


==Oppgave 2==
==Oppgave 2==

Sideversjonen fra 5. okt. 2023 kl. 11:08

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løysing laga av Torodd F. Ottestad

Løsning fra Farhan Omar

DEL 1

Oppgave 1

$\frac{(2ab^{-1})^3\cdot(a^2b^{-2})^{-1}}{4a^2b^{-3}} = \frac{2^3a^3b^{-3}\cdot a^{-2}b^2}{4a^2b^{-3}} = \frac{8}{4}\cdot a^{3+(-2)-2}b^{-3+2-(3)} =2a^{-1}b^2=\frac{2b^2}{a}$

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

DEL 2

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6